YOLOv8改进 | 主干篇 | 低照度增强网络PE-YOLO改进主干(改进暗光条件下的物体检测模型)

简介: YOLOv8改进 | 主干篇 | 低照度增强网络PE-YOLO改进主干(改进暗光条件下的物体检测模型)

一、本文介绍

本文给大家带来的改进机制是低照度图像增强网络PE-YOLO中的PENet,PENet通过拉普拉斯金字塔将图像分解成多个分辨率的组件,增强图像细节和低频信息。它包括一个细节处理模块(DPM),用于通过上下文分支和边缘分支增强图像细节,以及一个低频增强滤波器(LEF),以捕获低频语义并减少高频噪声。同时该网络的发布版本并不完善,存在二次创新的机会,后期我会将其网络进行二次创新,增强低照度的检测性能。同时该网络发布版本存在Bug我也已经修复欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

欢迎大家订阅我的专栏一起学习YOLO!

image.png

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、PE-YOLO算法原理

image.png

2.1 PE-YOLO的基本原理

PE-YOLO是一种改进的暗光条件下的物体检测模型。它结合了金字塔增强网络(PENet)和YOLOv3。PENet通过拉普拉斯金字塔将图像分解成多个分辨率的组件,增强图像细节和低频信息。它包括一个细节处理模块(DPM),用于通过上下文分支和边缘分支增强图像细节,以及一个低频增强滤波器(LEF),以捕获低频语义并减少高频噪声。PE-YOLO采用端到端的训练方法,简化训练过程。

PE-YOLO的基本原理可以分为几个关键点:

1. 金字塔增强网络(PENet): 使用拉普拉斯金字塔将图像分解为不同分辨率的组件,以提升细节和低频信息。

2. 细节处理模块(DPM): 包含上下文分支和边缘分支,专门用于增强图像的细节。

3. 低频增强滤波器(LEF): 用于捕获低频语义信息,同时减少高频噪声。

下面为大家展示了PE-YOLO系统的总览:

image.png

它说明了如何通过拉普拉斯金字塔将输入图像分解为不同层级(L0到L3),并通过PENet进行处理,最终提升图像质量以便进行物体检测。图中的细节处理模块(DPM)和低频增强滤波器(LEF)协同工作以增强图像。

2.2 金字塔增强网络

金字塔增强网络(Pyramid Enhancement Network)是PE-YOLO的关键组成部分,用于增强模型对不同尺度的目标的检测能力。

金字塔增强网络主要包括以下几个关键要点:

1. 多尺度特征金字塔:金字塔增强网络使用多个不同尺度的特征金字塔,这些金字塔包含了来自不同层级的特征图。这允许PE-YOLO同时检测不同大小的目标,从小尺寸物体到大尺寸物体都可以有效地检测。

2. 特征融合:金字塔增强网络通过特征融合的方式将来自不同尺度的特征图进行组合。这有助于提高模型对目标的定位和检测准确性,因为不同尺度的信息被有效地整合在一起。

3. 上采样和下采样:金字塔增强网络还包括上采样和下采样操作,以进一步调整特征金字塔的尺度。上采样用于增加分辨率,以更好地捕捉小目标的细节信息,而下采样则用于减小分辨率,以更好地捕捉大目标的全局信息。

4. 注意力机制:金字塔增强网络还引入了注意力机制,以使模型能够集中注意力在最重要的特征上,从而进一步提高检测性能。这有助于减少误检和漏检的情况。

总之,金字塔增强网络是PE-YOLO的关键创新之一,通过多尺度特征金字塔、特征融合、上采样、下采样和注意力机制等技术,提高了PE-YOLO模型在目标检测任务中的性能,使其能够更好地应对不同大小和尺度的目标。


2.3 细节处理模块

细节处理模块(Detail Processing Module,简称DPM)是PE-YOLO目标检测算法的一个关键组件,旨在增强模型对目标的细节信息的感知和处理能力。DPM的主要任务是通过上下文分支和边缘分支来对目标进行更详细的处理。

我为大家总结了PE-YOLO中细节处理模块(DPM)的主要特点和功能:

1. 上下文分支(Context Branch):上下文分支负责获取上下文信息,通过捕捉远程依赖关系来理解目标周围的环境。这有助于模型更好地理解目标与其周围环境的关系,从而提高目标检测的准确性。上下文信息的引入可以使模型更好地分辨目标和背景之间的区别。

2. 边缘分支(Edge Branch):边缘分支使用两个Sobel算子(Sobel operators)在不同方向上计算图像的梯度,从而获得目标的边缘信息。这有助于模型更好地识别目标的轮廓和边缘特征,并增强目标组件的纹理信息。边缘信息对于目标的细节识别和检测非常重要。

3. 组件增强:DPM的综合作用是增强目标的各个组件,包括上下文信息的增强和边缘信息的增强。这使得模型更能够准确地捕捉目标的细节特征,从而提高目标检测性能。

下图展示的是DPM的结构包括上下文分支(CB)和边缘分支(EB):

image.png

上下文分支通过捕捉远程依赖关系来获取上下文信息,并全局增强组件。

边缘分支使用两个不同方向的Sobel运算符来计算图像梯度,以获取边缘并增强组件的纹理。

2.4 低频增强滤波器

低频增强滤波器(Low-Frequency Enhancement Filter,简称LEF)用于捕捉和增强图像中的低频信息,这些低频信息通常包含了图像的大部分语义和关键信息,对于检测器的预测非常重要。

PE-YOLO中低频增强滤波器(LEF)的主要特点和功能总结如下:

1. 自适应平均池化:LEF使用不同尺寸的自适应平均池化操作来截取低频分量。这意味着LEF可以动态地适应不同尺度和语义的低频信息,以确保最大程度地捕捉图像中的关键细节。

2. 低频信息捕捉:LEF的主要任务是捕捉和增强图像中的低频信息,这些信息包含了图像的主要语义和关键细节。通过使用低通滤波器来过滤特征,LEF只允许低于截止频率的信息通过,从而增强了低频成分。

3. 多尺度处理:考虑到Inception的多尺度结构,LEF在不同的尺寸上应用自适应平均池化,以适应不同语义和尺度的低频信息。这有助于提高模型对图像细节的理解和捕捉。

4. 通道分离:LEF将特征f分为四个部分,即{f1, f2, f3, f4},通过通道分离的方式,每个部分都可以独立处理,以进一步增强低频信息。

下图展示了低频增强滤波器(LEF)的详细信息。LEF由不同大小的自适应平均池化组成,用于截取低频分量。

image.png

考虑到Inception的多尺度结构,我们使用了大小分别为1×1、2×2、3×3、6×6的自适应平均池化,并在每个尺度的末尾使用上采样来恢复特征的原始大小。不同核大小的平均池化形成了一个低通滤波器。我们通过通道分离将f分成四个部分,即{f1, f2, f3, f4}。每个部分都使用不同尺寸的池化进行处理,描述如下:


其中

image.png

是分割在通道上的f的一部分,Up是双线性插值采样,

image.png

是不同尺寸s × s的自适应平均池化。最后,在张量拼接每个{

image.png

, i = 1, 2, 3, 4}之后,我们将它们还原为f ∈

image.png

目录
相关文章
|
4月前
|
JSON 监控 API
在线网络PING接口检测服务器连通状态免费API教程
接口盒子提供免费PING检测API,可测试域名或IP的连通性与响应速度,支持指定地域节点,适用于服务器运维和网络监控。
|
4月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
130 2
|
7月前
|
SQL 数据采集 人工智能
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
306 12
|
5月前
|
机器学习/深度学习 算法 5G
基于DNN深度神经网络的OFDM+QPSK信号检测与误码率matlab仿真
本内容展示了基于深度神经网络(DNN)的OFDM-QPSK信号检测算法在Matlab2022a中的仿真效果。通过构建包含多层全连接层和ReLU激活函数的DNN模型,结合信号预处理与特征提取,实现了复杂通信环境下的高效信号检测。仿真结果对比了传统LS、MMSE方法与DNN方法在不同信噪比(SNR)条件下的误码率(BER)和符号错误率(SER),验证了DNN方法的优越性能。核心程序涵盖了QPSK调制、导频插入、OFDM发射、信道传输及DNN预测等关键步骤,为现代通信系统提供了可靠的技术支持。
92 0
|
7月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
258 8
|
8月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
8月前
|
机器学习/深度学习 数据采集 算法
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
262 17
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
221 10
|
11月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
下一篇
oss云网关配置