YOLOv5改进 | 2023主干篇 | EfficientViT替换Backbone(高效的视觉变换网络)

简介: YOLOv5改进 | 2023主干篇 | EfficientViT替换Backbone(高效的视觉变换网络)

一、本文介绍

本文给大家带来的改进机制是EfficientViT(高效的视觉变换网络),EfficientViT的核心是一种轻量级的多尺度线性注意力模块,能够在只使用硬件高效操作的情况下实现全局感受野和多尺度学习。本文带来是2023年的最新版本的EfficientViT网络结构,论文题目是'EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction'这个版本的模型结构(这点大家需要注意以下)。同时本文通过介绍其模型原理,然后手把手教你添加到网络结构中去,最后提供我完美运行的记录,如果大家运行过程中的有任何问题,都可以评论区留言,我都会进行回复。亲测在小目标检测和大尺度目标检测的数据集上都有大幅度的涨点效果(mAP直接涨了大概有0.1左右)

image.png

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏目录:

YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、EfficientViT模型原理

image.png

2.1 EfficientViT的基本原理

EfficientViT是一种高效的视觉变换网络,专为处理高分辨率图像而设计。它通过创新的多尺度线性注意力机制来提高模型的性能,同时减少计算成本。这种模型优化了注意力机制,使其更适合于硬件实现,能够在多种硬件平台上,包括移动CPU、边缘GPU和云GPU上实现快速的图像处理。相比于传统的高分辨率密集预测模型,EfficientViT在保持高性能的同时,大幅提高了计算效率。

我们可以将EfficientViT的基本原理概括为以下几点:

1. 多尺度线性注意力机制:EfficientViT采用了一种新型的多尺度线性注意力机制,这种方法旨在提高模型处理高分辨率图像时的效率和效果。

2. 轻量级和硬件高效操作:与传统的高分辨率密集预测模型不同,EfficientViT通过轻量级和硬件高效的操作来实现全局感受野和多尺度学习,这有助于降低计算成本。

3. 显著的性能提升和速度加快:在多种硬件平台上,包括移动CPU、边缘GPU和云GPU,EfficientViT实现了相比之前的模型显著的性能提升和加速。

2.2 多尺度线性注意力机制

多尺度线性注意力机制是一种轻量级的注意力模块,用于提高处理高分辨率图像时的效率。它旨在通过简化的操作来实现全局感受野和多尺度学习,这对于高分辨率密集预测尤其重要。这种注意力机制在保持硬件效率的同时,能够有效捕获长距离依赖关系,是高分辨率视觉识别任务的理想选择。

下图展示了EfficientViT的构建模块,左侧是EfficientViT的基本构建块,包括多尺度线性注意力模块和带有深度卷积的前馈网络(FFN+DWConv)。右侧详细展示了多尺度线性注意力,它通过聚合邻近令牌来获得多尺度的Q/K/V令牌。

image.png

在通过线性投影层得到Q/K/V令牌之后,使用轻量级的小核卷积生成多尺度令牌,然后通过ReLU线性注意力对这些多尺度令牌进行处理。最后,这些输出被联合起来,送入最终的线性投影层以进行特征融合。这种设计旨在以计算和存储效率高的方式捕获上下文信息和局部信息。

2.3 轻量级和硬件高效操作

EfficientViT中的轻量级和硬件高效操作主要指的是在模型中采用了简化的注意力机制和卷积操作,这些设计使得EfficientViT能够在各种硬件平台上高效运行。具体来说,模型通过使用多尺度线性注意力和深度卷积的前馈网络,以及在注意力模块中避免使用计算成本高的Softmax函数,实现了既保持模型性能又显著减少计算复杂性的目标。这些操作包括使用多尺度线性注意力机制来替代传统的Softmax注意力,以及采用深度可分离卷积(Depthwise Convolution)来减少参数和计算量。

下图为大家展示的是EfficientViT的宏观架构: image.png

EfficientViT的宏观架构包括一个标准的后端骨干网络和头部/编码器-解码器设计。EfficientViT模块被插入到骨干网络的第三和第四阶段。这种设计遵循了常见的做法,即将来自最后三个阶段(P2, P3, 和 P4)的特征送入头部,并采用加法来融合这些特征,以简化和提高效率。头部设计简单,由几个MBConv块和输出层组成。在这个框架中,EfficientViT通过提供一种新的轻量级多尺度注意力机制,能够高效处理高分辨率的图像,同时保持对不同硬件平台的适应性。

2.4 显著的性能提升和速度加快

显著性能提升和速度加快主要是指模型在各种硬件平台上,相对于以前的模型,在图像处理任务中表现出了更好的效率和速度。这得益于EfficientViT在设计上的优化,如多尺度线性注意力和深度可分离卷积等。这些改进使得模型在处理高分辨率任务时,如城市景观(Cityscapes)数据集,能够在保持性能的同时大幅减少计算延迟。在某些应用中,EfficientViT与现有最先进模型相比,提供了多达数倍的GPU延迟降低,这些优化使其在资源受限的设备上具有很高的实用性。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
71 3
|
5月前
|
机器学习/深度学习 自然语言处理 计算机视觉
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaNet替换YOLOV8主干
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaNet替换YOLOV8主干
|
5月前
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
|
5月前
|
机器学习/深度学习 自然语言处理 计算机视觉
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
4月前
|
计算机视觉
在yolov5项目中如何使用自带摄像机不用网络摄像机进行实时检测?
这篇文章讨论了在yolov5项目中,如何避免使用网络摄像机而改用自带的本地摄像机进行实时目标检测,并提供了解决摄像头打开错误的具体步骤和代码示例。
在yolov5项目中如何使用自带摄像机不用网络摄像机进行实时检测?
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
卷积神经网络(CNN):视觉识别的革命先锋
卷积神经网络(CNN)作为人工智能领域的一颗璀璨明珠,在计算机视觉中发挥着核心作用。CNN的发展历程展现了从生物学灵感到技术创新的转变,历经LeNet-5至AlexNet、VGGNet、ResNet等里程碑式的进步。其独特结构包括卷积层、池化层及全连接层,能够层层递进地提取特征并作出决策。CNN不仅在图像分类、目标检测等领域表现卓越,还在人脸识别、医学影像分析等方面展现出巨大潜力。尽管存在局限性,如对序列数据处理能力有限及解释性问题,但通过引入注意力机制、自监督学习等方法,CNN将持续演进,引领人工智能技术走向更加精彩的未来。
343 2
|
6天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
43 17
|
17天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
18天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
40 10