YOLOv5改进 | 2023 | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)

简介: YOLOv5改进 | 2023 | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)

一、本文介绍

本文给大家带来是用最新的RT-DETR模型中的AIFI模块间去替换YOLOv5中的SPPF。RT-DETR号称是打败YOLO的检测模型,其作为一种基于Transformer的检测方法,相较于传统的基于卷积的检测方法,提供了更为全面和深入的特征理解,将RT-DETR中的一些先进模块融入到YOLOv5往往能够达到一些特殊的效果(我个人猜测,所以我进行了一些实验来验证这一点),我将RT-DETR的AIFI模块和Conv模块融合在一起添加到了YOLOv5中。亲测这一改进并不一定能够提高精度我用了三个数据集来试(没有涨点就是没有涨点,我不能够没有涨点还去告诉你涨点这样也耽误大家的时间),但为啥要发出来这个AIFI首先其能够达到轻量化模型的作用的,其次其能够和RT-DETR模型的其他模块融合可以达到好的效果。所以发出来想要给的是轻量化读者来使用的,因为发论文并不一定要提高精度轻量化模型也是一个方向。

image.png

(我实测直接替换SPPF是有降点的在我测试的三个数据集,所以我参考了RT-DETR模型的网络结构在AIFI之后额外添加一个Conv模块)

(说一下这里为啥给到三颗星,因为这个改进机制无非就是替换SPPF对于我们的模型没有特别大的改动涨点效果也比较一般,其主要需要配和其它的RT-DETR模型来综合改进YOLOv5,如果单独使用比较适合轻量化的读者)

推荐指数:⭐⭐⭐

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、RT-DETR的AIFI框架原理

image.png

2.1 AIFI的基本原理

RT-DETR模型中的AIFI(基于注意力的内部尺度特征交互)模块是一个关键组件,它与CNN基于的跨尺度特征融合模块(CCFM)一起构成了模型的编码器部分。AIFI的主要思想如下->

  1. 基于注意力的特征处理:AIFI模块利用自我注意力机制来处理图像中的高级特征。自我注意力是一种机制,它允许模型在处理特定部分的数据时,同时考虑到数据的其他相关部分。这种方法特别适用于处理具有丰富语义信息的高级图像特征。
  2. 选择性特征交互:AIFI模块专注于在S5级别(即高级特征层)上进行内部尺度交互。这是基于认识到高级特征层包含更丰富的语义概念,能够更有效地捕捉图像中的概念实体间的联系。与此同时,避免在低级特征层进行相同的交互,因为低级特征缺乏必要的语义深度,且可能导致数据处理上的重复和混淆。

总结:AIFI模块的主要思想其实就是通过自我注意力机制专注于处理高级图像特征,从而提高模型在对象检测和识别方面的性能,同时减少不必要的计算消耗。

image.png

AIFI模块的主要作用和特点如下:

1. 减少计算冗余:AIFI模块进一步减少了基于变体D的计算冗余,这个变体仅在S5级别上执行内部尺度交互。

2. 高级特征的自我注意力操作:AIFI模块通过对具有丰富语义概念的高级特征应用自我注意力操作,捕捉图像中概念实体之间的联系。这种处理有助于随后的模块更有效地检测和识别图像中的对象。

3. 避免低级特征的内部尺度交互:由于低级特征缺乏语义概念,以及存在与高级特征交互时的重复和混淆风险,AIFI模块不对低级特征进行内部尺度交互。

4. 专注于S5级别:为了验证上述观点,AIFI模块仅在S5级别上进行内部尺度交互,这表明模块主要关注于处理高级特征。

目录
相关文章
|
7月前
|
机器学习/深度学习 编解码 边缘计算
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
本文介绍了如何在YOLOv5中用ShuffleNetV2替换卷积以减少计算量。ShuffleNetV2是一个轻量级网络,采用深度可分离卷积、通道重组和多尺度特征融合技术。文中提供了一个逐步教程,包括ShuffleNetV2模块的代码实现和在YOLOv5配置文件中的添加方法。此外,还分享了完整的代码链接和GFLOPs的比较,显示了GFLOPs的显著减少。该教程适合初学者实践,以提升深度学习目标检测技能。
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
|
7月前
|
机器学习/深度学习 编解码 算法
YOLOv5改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】
在YOLOv5的GFLOPs计算量中,卷积占了其中大多数的比列,为了减少计算量,研究人员提出了用EfficientNet代替backbone。本文给大家带来的教程是**将原来的主干网络替换为EfficientNet。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
|
7月前
|
机器学习/深度学习 算法 计算机视觉
[YOLOv8/YOLOv7/YOLOv5系列算法改进NO.5]改进特征融合网络PANET为BIFPN(更新添加小目标检测层yaml)
本文介绍了改进YOLOv5以解决处理复杂背景时可能出现的错漏检问题。
281 5
|
6月前
|
存储 机器学习/深度学习 计算机视觉
【YOLOv8改进-卷积Conv】 OREPA(Online Convolutional Re-parameterization):在线卷积重参数化
**OREPA**是在线卷积重参数化的缩写,它提出了一种两阶段流程来减少深度模型训练的开销。该方法通过线性缩放层优化复杂训练块,并在训练完成后将其压缩为单个卷积层,降低内存使用和提高训练速度。与现有技术相比,OREPA能减少约70%的训练内存开销,提升2倍训练速度,并在ImageNet上提高最多0.6%的准确性。此外,它还在目标检测和语义分割任务中表现出色。论文和代码可在提供的链接中找到。
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | 卷积模块 | 将Conv替换为轻量化的GSConv【原理 + 完整代码】
在这个教程中,作者介绍了如何将YOLOv5中的Conv模块替换为新型轻量级卷积GSConv,以实现模型瘦身并保持准确性。GSConv结合了分组卷积和空间卷积,减少了计算量。文章详细阐述了GSConv的原理,并提供了添加GSConv到YOLOv5的代码实现步骤。此外,还提到了Slim-neck by GSConv技术,它通过通道压缩和高效连接优化网络结构。读者可以获取完整代码进行实践,适用于资源受限的环境,如移动设备和实时应用。
|
6月前
|
测试技术 计算机视觉
【YOLOv8改进】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块 (论文笔记+引入代码)
YOLO目标检测专栏介绍了大可分卷积核注意力模块LSKA,用于解决VAN中大卷积核效率问题。LSKA通过分解2D卷积为1D卷积降低计算复杂度和内存占用,且使模型关注形状而非纹理,提高鲁棒性。在多种任务和数据集上,LSKA表现优于ViTs和ConvNeXt,代码可在GitHub获取。基础原理包括LSKA的卷积核分解设计和计算效率优化。示例展示了LSKA模块的实现。更多详情及配置参见相关链接。
|
7月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进 | 融合模块 | 用Resblock+CBAM卷积替换Conv【轻量化网络】
在这个教程中,介绍了如何将YOLOv8的目标检测模型改进,用Resblock+CBAM替换原有的卷积层。Resblock基于ResNet的残差学习思想,减少信息丢失,而CBAM是通道和空间注意力模块,增强网络对特征的感知。教程详细解释了ResNet和CBAM的原理,并提供了代码示例展示如何在YOLOv8中实现这一改进。此外,还给出了新增的yaml配置文件示例以及如何注册模块和执行程序。作者分享了完整的代码,并对比了改进前后的GFLOPs计算量,强调了这种改进在提升性能的同时可能增加计算需求。教程适合深度学习初学者实践和提升YOLO系列模型的性能。
|
7月前
ncnn中Yolov3DetectionOutput层各个参数的含义
ncnn中Yolov3DetectionOutput层各个参数的含义
38 1
|
7月前
|
算法 文件存储 计算机视觉
【YOLOv8改进】MobileNetV3替换Backbone (论文笔记+引入代码)
YOLO目标检测专栏探讨了MobileNetV3的创新改进,该模型通过硬件感知的NAS和NetAdapt算法优化,适用于手机CPU。引入的新架构包括反转残差结构和线性瓶颈层,提出高效分割解码器LR-ASPP,提升了移动设备上的分类、检测和分割任务性能。MobileNetV3-Large在ImageNet上准确率提升3.2%,延迟降低20%,COCO检测速度增快25%。MobileNetV3-Small则在保持相近延迟下,准确率提高6.6%。此外,还展示了MobileNetV3_InvertedResidual模块的代码实现。
|
7月前
YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)
YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)
398 2