Pandas数据处理——通过value_counts提取某一列出现次数最高的元素

简介: Pandas数据处理——通过value_counts提取某一列出现次数最高的元素


Pandas数据处理——渐进式学习——通过value_counts提取某一列出现次数最高的元素


前言

       这个女娃娃是否有一种初恋的感觉呢,但是她很明显不是一个真正意义存在的图片,我们需要很复杂的推算以及各种炼丹模型生成的AI图片,我自己认为难度系数很高,我仅仅用了64个文字形容词就生成了她,很有初恋的感觉,符合审美观,对于计算机来说她是一组数字,可是这个数字是怎么推断出来的就是很复杂了,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦,可以在很多AI大佬的文章中发现都有这个Pandas文章,每个人的写法都不同,但是都是适合自己理解的方案,我是用于教学的,故而我相信我的文章更适合新晋的程序员们学习,期望能节约大家的事件从而更好的将精力放到真正去实现某种功能上去。本专栏会更很多,只要我测试出新的用法就会添加,持续更新迭代,可以当做【Pandas字典】来使用,期待您的三连支持与帮助。


环境

系统环境:win11

Python版本:python3.9

编译工具:PyCharm Community Edition 2022.3.1

Numpy版本:1.19.5

Pandas版本:1.4.4

value_counts函数

函数语法

value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

参数说明

  1. normalize : boolean, default False 默认false,如为true,则以百分比的形式显示
  2. sort : boolean, default True 默认为true,会对结果进行排序
  3. ascending : boolean, default False 默认降序排序
  4. bins : integer, 格式(bins=1),意义不是执行计算,而是把它们分成半开放的数据集合,只适用于数字数据
  5. dropna : 对元素进行计数的开始时默认空值

具体示例

模拟数据

import pandas as pd
import numpy as np
df = pd.DataFrame(
    {'name': ['张丽华', '李诗诗', '王语嫣', '李诗诗', '李诗诗', '李诗诗', '李诗诗', '王语嫣', '王语嫣', '王语嫣'],
     'sex': ['girl', 'woman', np.nan, 'girl', 'woman', 'woman', 'woman', 'girl', 'girl', 'girl'],
     'age': [22, np.nan, 16, np.nan, 27, 27, 27, 16, 16, 16]
     }
)
print(df)
print("----value_counts----")
# value_counts

参数normalize=True·百分比显示

import pandas as pd
import numpy as np
df = pd.DataFrame(
    {'name': ['张丽华', '李诗诗', '王语嫣', '李诗诗', '李诗诗', '李诗诗', '李诗诗', '王语嫣', '王语嫣', '王语嫣'],
     'sex': ['girl', 'woman', np.nan, 'girl', 'woman', 'woman', 'woman', 'girl', 'girl', 'girl'],
     'age': [22, np.nan, 16, np.nan, 27, 27, 27, 16, 16, 16]
     }
)
print(df)
print("----value_counts----")
# value_counts
df = df['name'].value_counts(normalize=True)
print(df)

效果

参数sort=True·倒序

import pandas as pd
import numpy as np
df = pd.DataFrame(
    {'name': ['张丽华', '李诗诗', '王语嫣', '李诗诗', '李诗诗', '李诗诗', '李诗诗', '王语嫣', '王语嫣', '王语嫣'],
     'sex': ['girl', 'woman', np.nan, 'girl', 'woman', 'woman', 'woman', 'girl', 'girl', 'girl'],
     'age': [22, np.nan, 16, np.nan, 27, 27, 27, 16, 16, 16]
     }
)
print(df)
print("----value_counts----")
# value_counts
df = df['name'].value_counts(sort=True)
print(df)

效果:

参数ascending=True·正序

import pandas as pd
import numpy as np
df = pd.DataFrame(
    {'name': ['张丽华', '李诗诗', '王语嫣', '李诗诗', '李诗诗', '李诗诗', '李诗诗', '王语嫣', '王语嫣', '王语嫣'],
     'sex': ['girl', 'woman', np.nan, 'girl', 'woman', 'woman', 'woman', 'girl', 'girl', 'girl'],
     'age': [22, np.nan, 16, np.nan, 27, 27, 27, 16, 16, 16]
     }
)
print(df)
print("----value_counts----")
# value_counts
df = df['name'].value_counts(ascending=True)
print(df)

效果:

总结

其实我们测试的过程中就能体会到这个函数的好用之处,直接就能出排序的结果,实在是太方便了,免得我们很多操作了,好东西,谁用谁知道。

相关文章
|
1天前
|
数据挖掘 数据处理 开发者
Pandas高级数据处理:实时数据处理
本文介绍了Pandas在实时数据处理中的应用,涵盖基础概念、常见问题及解决方案。Pandas是Python中强大的数据分析库,支持流式读取和增量更新数据,适用于大规模数据集的处理。通过分块读取、数据类型优化等方法,可有效解决内存不足等问题。文中还提供了代码示例,帮助读者更好地理解和掌握Pandas在实时数据处理中的使用技巧。
32 15
|
4天前
|
数据采集 数据可视化 数据处理
Pandas高级数据处理:数据仪表板制作
《Pandas高级数据处理:数据仪表板制作》涵盖数据清洗、聚合、时间序列处理等技巧,解决常见错误如KeyError和内存溢出。通过多源数据整合、动态数据透视及可视化准备,结合性能优化与最佳实践,助你构建响应快速、数据精准的商业级数据仪表板。适合希望提升数据分析能力的开发者。
57 31
|
5天前
|
数据采集 并行计算 数据可视化
Pandas高级数据处理:数据报告生成实战指南
数据报告生成面临数据质量、计算性能、呈现形式和自动化等核心挑战。常见问题包括缺失值导致统计失真、内存溢出及可视化困难。解决方案涵盖数据清洗、分块处理、安全绘图模板等。通过模块化设计、异常处理机制和性能优化策略,如使用`category`类型、并行计算等,可大幅提升效率。最佳实践建议建立数据质量检查清单、版本控制和自动化测试框架,确保系统具备自适应能力,提升报告生成效率300%以上。
38 12
|
6天前
|
数据可视化 数据挖掘 数据处理
Pandas高级数据处理:交互式数据探索
Pandas 是数据分析中常用的数据处理库,提供了强大的数据结构和操作功能。本文从基础到高级,逐步介绍 Pandas 中交互式数据探索的常见问题及解决方案,涵盖数据读取、检查、清洗、预处理、聚合分组和可视化等内容。通过实例代码,帮助用户解决文件路径错误、编码问题、数据类型不一致、缺失值处理等挑战,提升数据分析效率。
76 32
|
7天前
|
存储 安全 数据处理
Pandas高级数据处理:数据安全与隐私保护
在数据驱动的时代,数据安全和隐私保护至关重要。本文探讨了使用Pandas进行数据分析时如何确保数据的安全性和隐私性,涵盖法律法规要求、用户信任和商业价值等方面。通过加密、脱敏、访问控制和日志审计等技术手段,结合常见问题及解决方案,帮助读者在实际项目中有效保护数据。
52 29
|
8天前
|
存储 安全 数据处理
Pandas高级数据处理:数据加密与解密
本文介绍如何使用Pandas结合加密库(如`cryptography`)实现数据加密与解密,确保敏感信息的安全。涵盖对称和非对称加密算法、常见问题及解决方案,包括密钥管理、性能优化、字符编码和数据完整性验证。通过示例代码展示具体操作,并提供常见报错的解决方法。
47 24
|
10天前
|
存储 算法 数据处理
Pandas高级数据处理:数据压缩与解压
本文介绍 Pandas 中的数据压缩与解压技术,探讨其在大数据集存储、远程传输和备份归档中的应用场景。Pandas 支持多种压缩格式(如 `.gzip`、`.bz2`、`.zip`),通过 `compression` 参数轻松实现数据的压缩与解压。文中还提供了常见问题的解决方案,如文件扩展名不匹配、内存不足和性能优化,并介绍了自动检测压缩格式和组合压缩加密的高级技巧。掌握这些功能可显著提升数据处理效率。
44 20
|
11天前
|
监控 物联网 数据处理
Pandas高级数据处理:数据流式计算
本文介绍了如何使用 Pandas 进行流式数据处理。流式计算能够实时处理不断流入的数据,适用于金融交易、物联网监控等场景。Pandas 虽然主要用于批处理,但通过分块读取文件、增量更新 DataFrame 和使用生成器等方式,也能实现简单的流式计算。文章还详细讨论了内存溢出、数据类型不一致、数据丢失或重复及性能瓶颈等常见问题的解决方案,并建议在处理大规模数据时使用专门的流式计算框架。
136 100
Pandas高级数据处理:数据流式计算
|
12天前
|
数据采集 数据挖掘 物联网
Pandas高级数据处理:实时数据处理
本文介绍了如何使用Pandas进行实时数据处理,涵盖从基础到高级的技巧。Pandas作为Python中流行的数据处理库,提供了高效的DataFrame和Series结构,适用于金融、社交媒体和物联网等领域的数据分析。文章详细讲解了数据读取、清洗、转换及常见问题的解决方案,如内存不足、数据不一致和性能瓶颈,并提供了避免常见报错的方法,帮助读者更高效地处理实时数据。
53 15
|
13天前
|
存储 数据采集 数据挖掘
Pandas高级数据处理:数据流处理
Pandas是Python中高效处理数据分析的流行库。随着数据量增长,传统的批量处理方式难以满足实时性需求,掌握Pandas的数据流处理技术尤为重要。常见问题包括文件格式不兼容、内存不足、缺失值和重复数据等。针对这些问题,可以通过指定参数读取文件、分块读取、填充或删除缺失值、去除重复数据、转换数据类型等方法解决。此外,还需注意KeyError、ValueError和MemoryError等常见报错,并采取相应措施。掌握这些技巧可提高数据处理效率和准确性。
54 26