Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量)

简介: Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量)



前言

       这个女娃娃是否有一种初恋的感觉呢,但是她很明显不是一个真正意义存在的图片,我们需要很复杂的推算以及各种炼丹模型生成的AI图片,我自己认为难度系数很高,我仅仅用了64个文字形容词就生成了她,很有初恋的感觉,符合审美观,对于计算机来说她是一组数字,可是这个数字是怎么推断出来的就是很复杂了,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦,可以在很多AI大佬的文章中发现都有这个Pandas文章,每个人的写法都不同,但是都是适合自己理解的方案,我是用于教学的,故而我相信我的文章更适合新晋的程序员们学习,期望能节约大家的事件从而更好的将精力放到真正去实现某种功能上去。本专栏会更很多,只要我测试出新的用法就会添加,持续更新迭代,可以当做【Pandas字典】来使用,期待您的三连支持与帮助。


环境

系统环境:win11

Python版本:python3.9

编译工具:PyCharm Community Edition 2022.3.1

Numpy版本:1.19.5

Pandas版本:1.4.4

基础函数的使用

Pandas数据处理——渐进式学习1、Pandas入门基础

Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索)


DataFrame记录每个值出现的次数

语法

DataFrame.duplicated(subset=None,keep='first')

参数

subset:判断是否是重复数据时考虑的列

keep:保留第一次出现的重复数据还是保留最后一次出现的

重复值的数量

import pandas as pd
import numpy as np
df = pd.DataFrame(
    {'name': ['张丽华', '李诗诗', '王语嫣', '李诗诗', '李诗诗', '李诗诗', '李诗诗'],
     'sex': ['girl', 'woman', np.nan, 'girl', 'woman', 'woman', 'woman'],
     'age': [22, np.nan, 16, np.nan, 27, 27, 27]
     }
)
print(df)
print("----duplicated----")
# duplicated
count = df.duplicated(subset=['name']).sum()
print("重复值数量:", count)

我们看了共计有5个李诗诗,因为第一个没有计数,从第二个开始计数故而输出结果是:4

重复值

import pandas as pd
import numpy as np
df = pd.DataFrame(
    {'name': ['张丽华', '李诗诗', '王语嫣', '李诗诗', '李诗诗', '李诗诗', '李诗诗'],
     'sex': ['girl', 'woman', np.nan, 'girl', 'woman', 'woman', 'woman'],
     'age': [22, np.nan, 16, np.nan, 27, 27, 27]
     }
)
print(df)
print("----duplicated----")
# duplicated
pr = df.duplicated(subset=['name'])
print("重复值:")
print(pr)

可以看到的数值匹配。

打印重复的值

import pandas as pd
import numpy as np
df = pd.DataFrame(
    {'name': ['张丽华', '李诗诗', '王语嫣', '李诗诗', '李诗诗', '李诗诗', '李诗诗', '王语嫣', '王语嫣', '王语嫣'],
     'sex': ['girl', 'woman', np.nan, 'girl', 'woman', 'woman', 'woman', 'girl', 'girl', 'girl'],
     'age': [22, np.nan, 16, np.nan, 27, 27, 27, 16, 16, 16]
     }
)
print(df)
print("----duplicated----")
# duplicated
print("打印重复的值:")
print(df[df.duplicated(subset=['name']) == True])

实际输出

总结

这个函数不是很好用,没有Counter函数好用呢,谁用谁知道。

这里我留一个Counter函数的例子。

我们创建一个测试数据:

from collections import Counter
nums = [1, 1, 1, 6, 6, 6, 7, 8]
count = Counter(nums)  # 统计词频
print(count)

测试数据输出可以看到依然是Counter类型,我们需要进行具体的遍历:

遍历:

from collections import Counter
nums = [1, 1, 1, 6, 6, 6, 7, 8]
count = Counter(nums)  # 统计词频
for k, v in count.items():
    print(k, v)

遍历效果:

到这里就能看到用法了,我们可以根据这个数据进行排序,例如一个冒泡排序:

from collections import Counter
nums = [1, 1, 1, 6, 6, 6, 7, 8]
count = Counter(nums)  # 统计词频
temp = []
for i, j in count.items():
    result = ["", ""]
    result[0] = i
    result[1] = j
    temp.append(result)
# 倒序排列一下
for i in range(0, len(temp) - 1):
    for j in range(0, len(temp) - i - 1):
        if temp[j][1] < temp[j + 1][1]:
            temps = temp[j]
            temp[j] = temp[j + 1]
            temp[j + 1] = temps
for i in temp:
    print("值", i[0], "数量", i[1])

倒序效果:

希望能给大家带来一些帮助。

相关文章
|
25天前
|
数据挖掘 数据处理 索引
Pandas高级数据处理:多级索引
Pandas的多级索引(MultiIndex)允许在一个轴上拥有多个层次的索引,适用于分层数据处理。可通过列表或已有DataFrame创建多级索引,如按日期和股票代码索引金融数据。常见问题包括索引层级混乱、数据选择困难和聚合操作复杂,解决方法分别为检查参数顺序、使用`loc`和`xs`方法选择数据、用`groupby()`进行聚合。代码案例展示了创建、调整索引层级、选择特定数据及聚合操作。
127 83
|
22天前
|
数据挖掘 Unix 数据处理
Pandas高级数据处理:管道操作
Pandas 是 Python 中流行的数据分析库,提供丰富的结构化数据处理功能。`pipe` 方法(管道操作)简化了数据处理步骤的串联,避免嵌套调用带来的代码混乱。通过定义函数并使用 `pipe` 串联,如筛选特定类别产品和计算销售额平均值,使代码更清晰易读。常见问题包括函数参数传递不正确、返回值类型不匹配及复杂逻辑难以维护。合理设计与编程习惯能充分发挥管道操作的优势,提高代码可读性和可维护性。
42 16
|
9天前
|
监控 物联网 数据处理
Pandas高级数据处理:数据流式计算
本文介绍了如何使用 Pandas 进行流式数据处理。流式计算能够实时处理不断流入的数据,适用于金融交易、物联网监控等场景。Pandas 虽然主要用于批处理,但通过分块读取文件、增量更新 DataFrame 和使用生成器等方式,也能实现简单的流式计算。文章还详细讨论了内存溢出、数据类型不一致、数据丢失或重复及性能瓶颈等常见问题的解决方案,并建议在处理大规模数据时使用专门的流式计算框架。
132 100
Pandas高级数据处理:数据流式计算
|
23天前
|
机器学习/深度学习 数据采集 算法
Pandas高级数据处理:自定义函数
Pandas是Python中强大的数据分析库,支持复杂的数据转换、计算与聚合。自定义函数在处理特殊需求时尤为重要,如数据清洗、特征工程和格式转换。使用自定义函数时需注意作用域、效率等问题,并解决常见报错如KeyError和ValueError。通过向量化操作和算法优化可提升性能。代码案例展示了如何用自定义函数计算排名和成绩等级,满足业务需求。
125 88
|
18天前
|
存储 缓存 数据处理
Pandas高级数据处理:缓存与持久化
本文介绍 Pandas 中的缓存与持久化技术,涵盖其意义、常见方式及问题解决方案。缓存可提高效率、减少重复计算;持久化则优化资源使用。文中探讨内存缓存、文件系统和数据库持久化,并提供代码示例,如 LRU 缓存、Parquet 格式保存及 SQLite 数据库交互,帮助读者理解和应用这些技术。
126 73
|
20天前
|
存储 数据挖掘 数据处理
Pandas高级数据处理:内存优化
Pandas 是流行的数据分析库,但随着数据量增加,内存使用问题日益突出。本文介绍常见内存优化问题及解决方案,包括选择合适数据类型(如 int8、float32)、使用 category 类型减少字符串内存开销、分块读取大文件避免 MemoryError 等。通过代码示例详细讲解如何优化内存使用,提高程序性能并避免错误。掌握这些技巧可显著提升 Pandas 数据处理效率。
95 58
|
4天前
|
数据可视化 数据挖掘 数据处理
Pandas高级数据处理:交互式数据探索
Pandas 是数据分析中常用的数据处理库,提供了强大的数据结构和操作功能。本文从基础到高级,逐步介绍 Pandas 中交互式数据探索的常见问题及解决方案,涵盖数据读取、检查、清洗、预处理、聚合分组和可视化等内容。通过实例代码,帮助用户解决文件路径错误、编码问题、数据类型不一致、缺失值处理等挑战,提升数据分析效率。
72 32
|
2天前
|
数据采集 数据可视化 数据处理
Pandas高级数据处理:数据仪表板制作
《Pandas高级数据处理:数据仪表板制作》涵盖数据清洗、聚合、时间序列处理等技巧,解决常见错误如KeyError和内存溢出。通过多源数据整合、动态数据透视及可视化准备,结合性能优化与最佳实践,助你构建响应快速、数据精准的商业级数据仪表板。适合希望提升数据分析能力的开发者。
52 31
|
5天前
|
存储 安全 数据处理
Pandas高级数据处理:数据安全与隐私保护
在数据驱动的时代,数据安全和隐私保护至关重要。本文探讨了使用Pandas进行数据分析时如何确保数据的安全性和隐私性,涵盖法律法规要求、用户信任和商业价值等方面。通过加密、脱敏、访问控制和日志审计等技术手段,结合常见问题及解决方案,帮助读者在实际项目中有效保护数据。
51 29
|
6天前
|
存储 安全 数据处理
Pandas高级数据处理:数据加密与解密
本文介绍如何使用Pandas结合加密库(如`cryptography`)实现数据加密与解密,确保敏感信息的安全。涵盖对称和非对称加密算法、常见问题及解决方案,包括密钥管理、性能优化、字符编码和数据完整性验证。通过示例代码展示具体操作,并提供常见报错的解决方法。
47 24