Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索)

简介: Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索)



前言

       这个女娃娃是否有一种初恋的感觉呢,但是她很明显不是一个真正意义存在的图片,我们需要很复杂的推算以及各种炼丹模型生成的AI图片,我自己认为难度系数很高,我仅仅用了64个文字形容词就生成了她,很有初恋的感觉,符合审美观,对于计算机来说她是一组数字,可是这个数字是怎么推断出来的就是很复杂了,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦,可以在很多AI大佬的文章中发现都有这个Pandas文章,每个人的写法都不同,但是都是适合自己理解的方案,我是用于教学的,故而我相信我的文章更适合新晋的程序员们学习,期望能节约大家的事件从而更好的将精力放到真正去实现某种功能上去。本专栏会更很多,只要我测试出新的用法就会添加,持续更新迭代,可以当做【Pandas字典】来使用,期待您的三连支持与帮助。


DataFrame函数

DataFrame构造函数

函数语法

DataFrame([data, index, columns, dtype, copy])

函数参数

data:表示要传入的数据 ,包括 ndarray,series,map,lists,dict,constant,也就是啥类型都行。

index:可以理解成横轴名称X。

columns:可以理解纵轴名称Y。

dtype:数据类型

copy:默认值是false,也就是不拷贝。从input输入中拷贝数据。

DataFrame属性和数据

DataFrame.axes                                #index: 行标签;columns: 列标签
DataFrame.as_matrix([columns])                #转换为矩阵
DataFrame.dtypes                              #返回数据的类型
DataFrame.ftypes                              #返回每一列的 数据类型float64:dense
DataFrame.get_dtype_counts()                  #返回数据框数据类型的个数
DataFrame.get_ftype_counts()                  #返回数据框数据类型float64:dense的个数
DataFrame.select_dtypes([include, include])   #根据数据类型选取子数据框
DataFrame.values                              #Numpy的展示方式
DataFrame.axes                                #返回横纵坐标的标签名
DataFrame.ndim                                #返回数据框的纬度
DataFrame.size                                #返回数据框元素的个数
DataFrame.shape                               #返回数据框的形状
DataFrame.memory_usage()                      #每一列的存储

DataFrame类型转换

DataFrame.astype(dtype[, copy, errors])       #转换数据类型
DataFrame.copy([deep])                        #deep深度复制数据
DataFrame.isnull()                            #以布尔的方式返回空值
DataFrame.notnull()                           #以布尔的方式返回非空值

DataFrame索引和迭代

DataFrame.head([n])                           #返回前n行数据
DataFrame.at                                  #快速标签常量访问器
DataFrame.iat                                 #快速整型常量访问器
DataFrame.loc                                 #标签定位,使用名称
DataFrame.iloc                                #整型定位,使用数字
DataFrame.insert(loc, column, value)          #在特殊地点loc[数字]插入column[列名]某列数据
DataFrame.iter()                              #Iterate over infor axis
DataFrame.iteritems()                         #返回列名和序列的迭代器
DataFrame.iterrows()                          #返回索引和序列的迭代器
DataFrame.itertuples([index, name])           #Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple.
DataFrame.lookup(row_labels, col_labels)      #Label-based “fancy indexing” function for DataFrame.
DataFrame.pop(item)                           #返回删除的项目
DataFrame.tail([n])                           #返回最后n行
DataFrame.xs(key[, axis, level, drop_level])  #Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.
DataFrame.isin(values)                        #是否包含数据框中的元素
DataFrame.where(cond[, other, inplace, …])    #条件筛选
DataFrame.mask(cond[, other, inplace, …])     #Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.
DataFrame.query(expr[, inplace])              #Query the columns of a frame with a boolean expression.

DataFrame二元运算

DataFrame.add(other[,axis,fill_value])        #加法,元素指向
DataFrame.sub(other[,axis,fill_value])        #减法,元素指向
DataFrame.mul(other[, axis,fill_value])       #乘法,元素指向
DataFrame.div(other[, axis,fill_value])       #小数除法,元素指向
DataFrame.truediv(other[, axis, level, …])    #真除法,元素指向
DataFrame.floordiv(other[, axis, level, …])   #向下取整除法,元素指向
DataFrame.mod(other[, axis,fill_value])       #模运算,元素指向
DataFrame.pow(other[, axis,fill_value])       #幂运算,元素指向
DataFrame.radd(other[, axis,fill_value])      #右侧加法,元素指向
DataFrame.rsub(other[, axis,fill_value])      #右侧减法,元素指向
DataFrame.rmul(other[, axis,fill_value])      #右侧乘法,元素指向
DataFrame.rdiv(other[, axis,fill_value])      #右侧小数除法,元素指向
DataFrame.rtruediv(other[, axis, …])          #右侧真除法,元素指向
DataFrame.rfloordiv(other[, axis, …])         #右侧向下取整除法,元素指向
DataFrame.rmod(other[, axis,fill_value])      #右侧模运算,元素指向
DataFrame.rpow(other[, axis,fill_value])      #右侧幂运算,元素指向
DataFrame.lt(other[, axis, level])            #类似Array.lt
DataFrame.gt(other[, axis, level])            #类似Array.gt
DataFrame.le(other[, axis, level])            #类似Array.le
DataFrame.ge(other[, axis, level])            #类似Array.ge
DataFrame.ne(other[, axis, level])            #类似Array.ne
DataFrame.eq(other[, axis, level])            #类似Array.eq
DataFrame.combine(other,func[,fill_value, …]) #Add two DataFrame objects and do not propagate NaN values, so if for a
DataFrame.combine_first(other)                #Combine two DataFrame objects and default to non-null values in frame calling the method.

DataFrame函数应用

DataFrame.apply(func[, axis, broadcast, …])   #应用函数
DataFrame.applymap(func)                      #Apply a function to a DataFrame that is intended to operate elementwise, i.e.
DataFrame.aggregate(func[, axis])             #Aggregate using callable, string, dict, or list of string/callables
DataFrame.transform(func, *args, **kwargs)    #Call function producing a like-indexed NDFrame

DataFrame分组

DataFrame.groupby([by, axis, level, …])       #分组

DataFrame窗口

DataFrame.rolling(window[, min_periods, …])   #滚动窗口
DataFrame.expanding([min_periods, freq, …])   #拓展窗口
DataFrame.ewm([com, span, halflife,  …])      #指数权重窗口

DataFrame描述统计学

DataFrame.abs()                               #返回绝对值
DataFrame.all([axis, bool_only, skipna])      #Return whether all elements are True over requested axis
DataFrame.any([axis, bool_only, skipna])      #Return whether any element is True over requested axis
DataFrame.clip([lower, upper, axis])          #Trim values at input threshold(s).
DataFrame.clip_lower(threshold[, axis])       #Return copy of the input with values below given value(s) truncated.
DataFrame.clip_upper(threshold[, axis])       #Return copy of input with values above given value(s) truncated.
DataFrame.corr([method, min_periods])         #返回本数据框成对列的相关性系数
DataFrame.corrwith(other[, axis, drop])       #返回不同数据框的相关性
DataFrame.count([axis, level, numeric_only])  #返回非空元素的个数
DataFrame.cov([min_periods])                  #计算协方差
DataFrame.cummax([axis, skipna])              #Return cumulative max over requested axis.
DataFrame.cummin([axis, skipna])              #Return cumulative minimum over requested axis.
DataFrame.cumprod([axis, skipna])             #返回累积
DataFrame.cumsum([axis, skipna])              #返回累和
DataFrame.describe([percentiles,include, …])  #整体描述数据框
DataFrame.diff([periods, axis])               #1st discrete difference of object
DataFrame.eval(expr[, inplace])               #Evaluate an expression in the context of the calling DataFrame instance.
DataFrame.kurt([axis, skipna, level, …])      #返回无偏峰度Fisher’s  (kurtosis of normal == 0.0).
DataFrame.mad([axis, skipna, level])          #返回偏差
DataFrame.max([axis, skipna, level, …])       #返回最大值
DataFrame.mean([axis, skipna, level, …])      #返回均值
DataFrame.median([axis, skipna, level, …])    #返回中位数
DataFrame.min([axis, skipna, level, …])       #返回最小值
DataFrame.mode([axis, numeric_only])          #返回众数
DataFrame.pct_change([periods, fill_method])  #返回百分比变化
DataFrame.prod([axis, skipna, level, …])      #返回连乘积
DataFrame.quantile([q, axis, numeric_only])   #返回分位数
DataFrame.rank([axis, method, numeric_only])  #返回数字的排序
DataFrame.round([decimals])                   #Round a DataFrame to a variable number of decimal places.
DataFrame.sem([axis, skipna, level, ddof])    #返回无偏标准误
DataFrame.skew([axis, skipna, level, …])      #返回无偏偏度
DataFrame.sum([axis, skipna, level, …])       #求和
DataFrame.std([axis, skipna, level, ddof])    #返回标准误差
DataFrame.var([axis, skipna, level, ddof])    #返回无偏误差

DataFrame从新索引

DataFrame.add_prefix(prefix)                  #添加前缀
DataFrame.add_suffix(suffix)                  #添加后缀
DataFrame.align(other[, join, axis, level])   #Align two object on their axes with the
DataFrame.drop(labels[, axis, level, …])      #返回删除的列
DataFrame.drop_duplicates([subset, keep, …])  #Return DataFrame with duplicate rows removed, optionally only
DataFrame.duplicated([subset, keep])          #Return boolean Series denoting duplicate rows, optionally only

DataFrame选取以及标签操作

DataFrame.equals(other)                       #两个数据框是否相同
DataFrame.filter([items, like, regex, axis])  #过滤特定的子数据框
DataFrame.first(offset)                       #Convenience method for subsetting initial periods of time series data based on a date offset.
DataFrame.head([n])                           #返回前n行
DataFrame.idxmax([axis, skipna])              #Return index of first occurrence of maximum over requested axis.
DataFrame.idxmin([axis, skipna])              #Return index of first occurrence of minimum over requested axis.
DataFrame.last(offset)                        #Convenience method for subsetting final periods of time series data based on a date offset.
DataFrame.reindex([index, columns])           #Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.
DataFrame.reindex_axis(labels[, axis, …])     #Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.
DataFrame.reindex_like(other[, method, …])    #Return an object with matching indices to myself.
DataFrame.rename([index, columns])            #Alter axes input function or functions.
DataFrame.rename_axis(mapper[, axis, copy])   #Alter index and / or columns using input function or functions.
DataFrame.reset_index([level, drop, …])       #For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc.
DataFrame.sample([n, frac, replace, …])       #返回随机抽样
DataFrame.select(crit[, axis])                #Return data corresponding to axis labels matching criteria
DataFrame.set_index(keys[, drop, append ])    #Set the DataFrame index (row labels) using one or more existing columns.
DataFrame.tail([n])                           #返回最后几行
DataFrame.take(indices[, axis, convert])      #Analogous to ndarray.take
DataFrame.truncate([before, after, axis ])    #Truncates a sorted NDFrame before and/or after some particular index value.

DataFrame处理缺失值

DataFrame.dropna([axis, how, thresh, …])      #Return object with labels on given axis omitted where alternately any
DataFrame.fillna([value, method, axis, …])    #填充空值
DataFrame.replace([to_replace, value, …])     #Replace values given in ‘to_replace’ with ‘value’.

DataFrame从新定型&排序&转变形态

DataFrame.pivot([index, columns, values])     #Reshape data (produce a “pivot” table) based on column values.
DataFrame.reorder_levels(order[, axis])       #Rearrange index levels using input order.
DataFrame.sort_values(by[, axis, ascending])  #Sort by the values along either axis
DataFrame.sort_index([axis, level, …])        #Sort object by labels (along an axis)
DataFrame.nlargest(n, columns[, keep])        #Get the rows of a DataFrame sorted by the n largest values of columns.
DataFrame.nsmallest(n, columns[, keep])       #Get the rows of a DataFrame sorted by the n smallest values of columns.
DataFrame.swaplevel([i, j, axis])             #Swap levels i and j in a MultiIndex on a particular axis
DataFrame.stack([level, dropna])              #Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels.
DataFrame.unstack([level, fill_value])        #Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.
DataFrame.melt([id_vars, value_vars, …])      #“Unpivots” a DataFrame from wide format to long format, optionally
DataFrame.T                                   #Transpose index and columns
DataFrame.to_panel()                          #Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.
DataFrame.to_xarray()                         #Return an xarray object from the pandas object.
DataFrame.transpose(*args, **kwargs)          #Transpose index and columns

DataFrame_Combining&joining&merging

DataFrame.append(other[, ignore_index, …])    #追加数据
DataFrame.assign(**kwargs)                    #Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones.
DataFrame.join(other[, on, how, lsuffix, …])  #Join columns with other DataFrame either on index or on a key column.
DataFrame.merge(right[, how, on, left_on, …]) #Merge DataFrame objects by performing a database-style join operation by columns or indexes.
DataFrame.update(other[, join, overwrite, …]) #Modify DataFrame in place using non-NA values from passed DataFrame.

DataFrame时间序列

DataFrame.asfreq(freq[, method, how, …])      #将时间序列转换为特定的频次
DataFrame.asof(where[, subset])               #The last row without any NaN is taken (or the last row without
DataFrame.shift([periods, freq, axis])        #Shift index by desired number of periods with an optional time freq
DataFrame.first_valid_index()                 #Return label for first non-NA/null value
DataFrame.last_valid_index()                  #Return label for last non-NA/null value
DataFrame.resample(rule[, how, axis, …])      #Convenience method for frequency conversion and resampling of time series.
DataFrame.to_period([freq, axis, copy])       #Convert DataFrame from DatetimeIndex to PeriodIndex with desired
DataFrame.to_timestamp([freq, how, axis])     #Cast to DatetimeIndex of timestamps, at beginning of period
DataFrame.tz_convert(tz[, axis, level, copy]) #Convert tz-aware axis to target time zone.
DataFrame.tz_localize(tz[, axis, level, …])   #Localize tz-naive TimeSeries to target time zone.

DataFrame作图

DataFrame.plot([x, y, kind, ax, ….])          #DataFrame plotting accessor and method
DataFrame.plot.area([x, y])                   #面积图Area plot
DataFrame.plot.bar([x, y])                    #垂直条形图Vertical bar plot
DataFrame.plot.barh([x, y])                   #水平条形图Horizontal bar plot
DataFrame.plot.box([by])                      #箱图Boxplot
DataFrame.plot.density(**kwds)                #核密度Kernel Density Estimate plot
DataFrame.plot.hexbin(x, y[, C, …])           #Hexbin plot
DataFrame.plot.hist([by, bins])               #直方图Histogram
DataFrame.plot.kde(**kwds)                    #核密度Kernel Density Estimate plot
DataFrame.plot.line([x, y])                   #线图Line plot
DataFrame.plot.pie([y])                       #饼图Pie chart
DataFrame.plot.scatter(x, y[, s, c])          #散点图Scatter plot
DataFrame.boxplot([column, by, ax, …])        #Make a box plot from DataFrame column optionally grouped by some columns or
DataFrame.hist(data[, column, by, grid, …])   #Draw histogram of the DataFrame’s series using matplotlib / pylab.

DataFrame转换为其他格式

DataFrame.from_csv(path[, header, sep, …])    #Read CSV file (DEPRECATED, please use pandas.read_csv() instead).
DataFrame.from_dict(data[, orient, dtype])    #Construct DataFrame from dict of array-like or dicts
DataFrame.from_items(items[,columns,orient])  #Convert (key, value) pairs to DataFrame.
DataFrame.from_records(data[, index, …])      #Convert structured or record ndarray to DataFrame
DataFrame.info([verbose, buf, max_cols, …])   #Concise summary of a DataFrame.
DataFrame.to_pickle(path[, compression, …])   #Pickle (serialize) object to input file path.
DataFrame.to_csv([path_or_buf, sep, na_rep])  #Write DataFrame to a comma-separated values (csv) file
DataFrame.to_hdf(path_or_buf, key, **kwargs)  #Write the contained data to an HDF5 file using HDFStore.
DataFrame.to_sql(name, con[, flavor, …])      #Write records stored in a DataFrame to a SQL database.
DataFrame.to_dict([orient, into])             #Convert DataFrame to dictionary.
DataFrame.to_excel(excel_writer[, …])         #Write DataFrame to an excel sheet
DataFrame.to_json([path_or_buf, orient, …])   #Convert the object to a JSON string.
DataFrame.to_html([buf, columns, col_space])  #Render a DataFrame as an HTML table.
DataFrame.to_feather(fname)                   #write out the binary feather-format for DataFrames
DataFrame.to_latex([buf, columns, …])         #Render an object to a tabular environment table.
DataFrame.to_stata(fname[, convert_dates, …]) #A class for writing Stata binary dta files from array-like objects
DataFrame.to_msgpack([path_or_buf, encoding]) #msgpack (serialize) object to input file path
DataFrame.to_sparse([fill_value, kind])       #Convert to SparseDataFrame
DataFrame.to_dense()                          #Return dense representation of NDFrame (as opposed to sparse)
DataFrame.to_string([buf, columns, …])        #Render a DataFrame to a console-friendly tabular output.
DataFrame.to_clipboard([excel, sep])          #Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

总结

DataFrame是二维数组的处理,例如,我们在图像操作过程中会用的非常多,可以自己测试一下,用Python的OpenCV读取一张图片,输出一下就能看到这个图片是数据类型是数组,并且是个多维的,我们以后遇到的数据结构也会越来越复杂,故而我们一定要讲DataFrame活学活用,当然也离不开Numpy的使用。相辅相成,缺一不可。

相关文章
|
17天前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
115 67
|
3天前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
34 10
|
17天前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
35 4
|
1月前
|
Python
|
1月前
|
Python
Pandas 常用函数-数据合并
Pandas 常用函数-数据合并
39 1
|
1月前
|
BI Python
Pandas 常用函数-数据统计和描述
Pandas 常用函数-数据统计和描述
119 0
|
1月前
|
Python
Pandas 常用函数-数据选择和过滤
Pandas 常用函数-数据选择和过滤
16 0
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
74 0
|
3月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
100 0
|
1月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
45 2