Apollo自动驾驶系统概述——传感器技术

简介: Apollo自动驾驶系统概述——传感器技术

思维导图概述

自动驾驶系统架构

自动驾驶系统的三个层次

自动驾驶系统的架构主要包括三个层次:感知层、决策层和控制层。


感知层是自动驾驶系统中最基本的层次,负责实时感知车辆周围的环境和道路信息。该层次主要由传感器组成,如相机、激光雷达、毫米波雷达等。通过这些传感器获取的数据,可以用于识别和追踪其他车辆、行人、交通标志、道路边缘等。


决策层是自动驾驶系统中的中间层次,主要负责根据感知层获取的数据做出决策。决策层可以根据当前的道路情况和交通规则,判断车辆应该采取的行为,例如加速、刹车、转向等。该层次通常由算法和人工智能技术组成,如机器学习、深度学习等。


控制层是自动驾驶系统中的最高层次,负责将决策层生成的控制命令转化为实际的车辆动作。控制层通常由电子控制单元(ECU)和执行器组成,如马达、刹车器、转向器等。该层次可以通过控制车辆的加速度、制动力和转向角度等来驱动车辆。


自动驾驶系统的基本技术架构

自动驾驶系统的基本技术架构包括以下几个方面:


传感器技术:包括相机、雷达、激光雷达等传感器技术,用于感知车辆周围的环境和道路信息。


数据处理与算法:利用机器学习、深度学习等算法对传感器获取的数据进行处理和分析,用于识别和追踪其他车辆、行人、交通标志等。


地图与定位技术:利用卫星定位系统(如GPS)和地图数据,对车辆的位置和姿态进行精确定位,以及提供实时的地图信息。


决策与规划技术:根据感知数据和地图信息,对车辆当前的道路情况进行分析和决策,生成相应的驾驶策略和行驶轨迹。


控制与执行技术:将决策层生成的控制命令传递给车辆的执行器,以实时控制车辆的加速度、制动力和转向角度等。


可视化与用户界面:为驾驶员或乘客提供直观的信息界面,向其展示车辆状态、路况信息等,以及与自动驾驶系统进行交互。


自动驾驶技术国内外发展

自动驾驶技术在国内外的发展可谓日新月异。在国内,随着政府对自动驾驶技术的支持和推动,国内企业在该领域取得了显著进展。例如,百度的Apollo平台已经开放了完整的自动驾驶技术栈,吸引了众多合作伙伴加入。此外,腾讯、阿里巴巴等互联网巨头也投资了自动驾驶技术的研发。国内的车企也在积极开展自动驾驶技术的研究和应用,例如特斯拉在中国推出了自动驾驶功能。


在国外,美国是自动驾驶技术最为发达的国家之一。特斯拉是美国自动驾驶技术的领军企业,其在自动驾驶方面拥有先进的技术和大量实际驾驶数据。另外,Uber也在美国积极推进自动驾驶技术的应用,并在一些城市进行自动驾驶试点项目。谷歌旗下的Waymo公司在自动驾驶技术领域积累了丰富的经验,并计划在更多城市开展自动驾驶出租车服务。


传感器技术

自动驾驶系统中使用的传感器包括摄像头、毫米波雷达和激光雷达。这些传感器用于实时感知车辆周围的环境,并提供准确的信息以支持自动驾驶决策和控制。


摄像头

  1. 摄像头:摄像头是自动驾驶系统中最常用的传感器之一。它可以捕捉到车辆周围的图像,并通过计算机视觉算法来识别和跟踪道路标志、车辆、行人等。以下是一个基于OpenCV库的Python代码示例,用于捕捉图像并显示在窗口中:
import cv2
# 打开摄像头
cap = cv2.VideoCapture(0)
while True:
    # 读取帧
    ret, frame = cap.read()
    # 显示帧
    cv2.imshow('Camera', frame)
    # 检测按键
    if cv2.waitKey(1) == ord('q'):
        break
# 释放摄像头资源
cap.release()
# 关闭窗口
cv2.destroyAllWindows()

毫米波雷达

  1. 毫米波雷达:毫米波雷达是一种主动式传感器,它利用高频率的电磁波来感知车辆周围的物体。毫米波雷达可以提供物体的距离、速度和角度等信息,对于障碍物检测和跟踪非常重要。以下是一个基于ROS(机器人操作系统)框架的C++代码示例,用于使用毫米波雷达接收和处理数据:
#include <ros/ros.h>
#include <sensor_msgs/PointCloud2.h>
void mmWaveRadarCallback(const sensor_msgs::PointCloud2::ConstPtr& msg)
{
    // 处理雷达数据
    // ...
    ROS_INFO("Received mmWave Radar data");
}
int main(int argc, char** argv)
{
    // 初始化ROS节点
    ros::init(argc, argv, "mmWave_radar");
    // 创建ROS节点句柄
    ros::NodeHandle nh;
    // 创建订阅者,并指定回调函数
    ros::Subscriber sub = nh.subscribe("/mmWave_radar_data", 10, mmWaveRadarCallback);
    // 循环等待回调函数
    ros::spin();
    return 0;
}

激光雷达

  1. 激光雷达:激光雷达是一种被动式传感器,通过发送激光束并测量其反射信号的时间来感知车辆周围的物体。激光雷达可以提供高精度的距离和角度信息,广泛用于地图构建、障碍物检测和定位。以下是一个基于ROS框架的C++代码示例,用于使用激光雷达接收和处理数据:
#include <ros/ros.h>
#include <sensor_msgs/LaserScan.h>
void laserScanCallback(const sensor_msgs::LaserScan::ConstPtr& msg)
{
    // 处理激光雷达数据
    // ...
    ROS_INFO("Received Laser Scan data");
}
int main(int argc, char** argv)
{
    // 初始化ROS节点
    ros::init(argc, argv, "laser_scan");
    // 创建ROS节点句柄
    ros::NodeHandle nh;
    // 创建订阅者,并指定回调函数
    ros::Subscriber sub = nh.subscribe("/laser_scan_data", 10, laserScanCallback);
    // 循环等待回调函数
    ros::spin();
    return 0;
}

小结

自动驾驶传感器技术是实现自动驾驶功能的关键技术之一。它能够感知周围环境并获取相关数据,以供自动驾驶系统进行决策和控制。


相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
ROS入门实践
本课程将基于基础设施即代码 IaC 的理念,介绍阿里云自动化编排服务ROS的概念、功能和使用方式,并通过实际应用场景介绍如何借助ROS实现云资源的自动化部署,使得云上资源部署和运维工作更为高效。
相关文章
|
安全 Linux 数据安全/隐私保护
centos如何将一般用户设置为超级权限
【4月更文挑战第17天】centos如何将一般用户设置为超级权限
1564 1
|
消息中间件 Kubernetes NoSQL
Linux时间校准(ntpdate及NTP客户端代码校准示例)
Linux时间校准(ntpdate及NTP客户端代码校准示例)
|
人工智能 算法 数据可视化
路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)-2
路径规划最全综述+代码+可视化绘图(Dijkstra算法+A*算法+RRT算法等)-2
|
大数据 开发者 程序员
连接真实世界,高德地图背后的算法演进和创新
出行是生活的重要部分。我们都习惯了出门用导航,但一个导航App背后,需要什么样的数据和算法来支撑呢?算法又如何来推动出行体验的进步和创新呢?在阿里CIO学院攻“疫”技术公益大咖说的第十四场直播中高德地图首席科学家任小枫将为大家讲解高德地图背后的算法的演进和创新,分别从地图制作、搜索推荐、路径规划、时
11986 1
|
10月前
|
人工智能 自然语言处理 知识图谱
Yuxi-Know:开源智能问答系统,基于大模型RAG与知识图谱技术快速构建知识库
Yuxi-Know是一个结合大模型RAG知识库与知识图谱技术的智能问答平台,支持多格式文档处理和复杂知识关系查询,具备多模型适配和智能体拓展能力。
2597 55
Yuxi-Know:开源智能问答系统,基于大模型RAG与知识图谱技术快速构建知识库
|
11月前
|
存储 Kubernetes 开发工具
使用ArgoCD管理Kubernetes部署指南
ArgoCD 是一款基于 Kubernetes 的声明式 GitOps 持续交付工具,通过自动同步 Git 存储库中的配置与 Kubernetes 集群状态,确保一致性与可靠性。它支持实时同步、声明式设置、自动修复和丰富的用户界面,极大简化了复杂应用的部署管理。结合 Helm Charts,ArgoCD 提供模块化、可重用的部署流程,显著减少人工开销和配置错误。对于云原生企业,ArgoCD 能优化部署策略,提升效率与安全性,是实现自动化与一致性的理想选择。
733 0
|
移动开发 Unix Linux
拉取代码编辑器中报错`Delete ␍ prettier/prettier` 问题的解决方案
通过正确配置Prettier、EditorConfig文件和编辑器设置,可以有效解决 `Delete ␍ prettier/prettier`的问题。这不仅能避免频繁的格式化错误,还能确保团队成员在不同开发环境下的代码风格一致,提升项目的代码质量和可维护性。按照上述解决方案调整配置后,您的项目将更加规范,代码也会更具一致性。
1433 4
|
机器学习/深度学习 算法 安全
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-2
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-2
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-2