Python Numpy入门基础(二)数组操作

简介: Python Numpy入门基础(二)数组操作

入门基础(二)

NumPy是Python中一个重要的数学运算库,它提供了了一组多维数组对象和一组用于操作这些数组的函数。以下是一些NumPy的主要特点:

  1. 多维数组对象:NumPy的核心是ndarray对象,它是一个多维数组对象,可以容纳任意数据类型。
  2. 矢量化操作:使用NumPy的函数,可以对整个数组进行操作,而不需要显式循环。
  3. 广播:NumPy的广播机制允许对不同形状的数组执行算术操作,而无需进行显式循环或手动对齐。
  4. 易于扩展:NumPy可以用C或C++扩展,以加速大型数值计算任务。
  5. 强大的函数库:NumPy提供了许多用于线性代数、傅里叶分析、随机数生成等领域的函数。
  6. 易于使用:NumPy与Python的内置数据结构无缝集成,因此可以轻松地将Python代码转换为使用NumPy。

数组操作

组索引和切片

索引从0开始,索引值不能超过长度,否则会报IndexError错误。

一维数组的索引和切片
>>> import numpy as np
>>> a = np.array([1,2,3,4,5])
>>> a[2]
3
>>> a[1:4:2]
array([2, 4])
>>> a[1:3]
array([2, 3])
>>> a[0::2]
array([1, 3, 5])
>>> a[5]
Traceback (most recent call last):
  File "<pyshell#15>", line 1, in <module>
    a[5]
IndexError: index 5 is out of bounds for axis 0 with size 5
多维数组的索引
>>> import numpy as np
>>> a = np.arange(24).reshape((2,3,4))
>>> a
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],
       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
>>> a[1,2,3]
23
>>> a[-1,-2,-3]
17
>>> a[0,2,2]
10
>>> a[0,3,3]
Traceback (most recent call last):
  File "<pyshell#12>", line 1, in <module>
    a[0,3,3]
IndexError: index 3 is out of bounds for axis 1 with size 3
多维数组切片
>>> import numpy as np
>>> a = np.arange(24).reshape((2,3,4)) + 1
>>> a
array([[[ 1,  2,  3,  4],
        [ 5,  6,  7,  8],
        [ 9, 10, 11, 12]],
       [[13, 14, 15, 16],
        [17, 18, 19, 20],
        [21, 22, 23, 24]]])
>>> a[:1,2]
array([[ 9, 10, 11, 12]])
>>> a[:,1:3,:]
array([[[ 5,  6,  7,  8],
        [ 9, 10, 11, 12]],
       [[17, 18, 19, 20],
        [21, 22, 23, 24]]])
>>> a[:,:,::2]
array([[[ 1,  3],
        [ 5,  7],
        [ 9, 11]],
       [[13, 15],
        [17, 19],
        [21, 23]]])
>>> a[:,:,1::2]
array([[[ 2,  4],
        [ 6,  8],
        [10, 12]],
       [[14, 16],
        [18, 20],
        [22, 24]]])
>>> a[1:3,:,:]
array([[[13, 14, 15, 16],
        [17, 18, 19, 20],
        [21, 22, 23, 24]]])
>>> a[1:3,1:3,:]
array([[[17, 18, 19, 20],
        [21, 22, 23, 24]]])
>>> a[1:3,1:3,1:3]
array([[[18, 19],
        [22, 23]]])
通过布尔数组访问数组元素
>>> import numpy as np
>>> a = np.array([1, 2, 3, 4, 5])
>>> b = np.array([True, False, True, False, True])
>>> a[b]
array([1, 3, 5])
>>> b = np.array([False, True, False, True, False])
>>> a[b]
array([2, 4])
>>> b = a<=3
>>> a[b]
array([1, 2, 3])
>>> b = a%2==0
>>> a[b]
array([2, 4])
>>> b = a%2==1
>>> a[b]
array([1, 3, 5])

数组的整体操作

数组的拼接

在 NumPy 中,可以使用多种方法来拼接数组。以下是一些常用的方法:

numpy.concatenate()

这个函数用于连接两个数组,沿指定的轴在末尾添加第二个数组的元素。

>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
      [3, 4],
      [5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
      [3, 4, 6]])
>>> np.concatenate((a, b), axis=None)
array([1, 2, 3, 4, 5, 6])
numpy.vstack()

这个函数用于垂直方向拼接数组,即行方向添加第二个数组的元素。

>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.vstack((a,b))
array([[1, 2, 3],
      [4, 5, 6]])
>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[4], [5], [6]])
>>> np.vstack((a,b))
array([[1],
      [2],
      [3],
      [4],
      [5],
      [6]])
numpy.hstack()

这个函数用于水平方向拼接数组,即列方向添加第二个数组的元素。

>>> a = np.array((1,2,3))
>>> b = np.array((4,5,6))
>>> np.hstack((a,b))
array([1, 2, 3, 4, 5, 6])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[4],[5],[6]])
>>> np.hstack((a,b))
array([[1, 4],
       [2, 5],
       [3, 6]])
numpy.row_stack()

这个函数是vstack的alias,别名就是同一个函数。

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.row_stack((a, b))
array([[1, 2],
       [3, 4],
       [5, 6]])

在使用这些函数时,需要确保拼接的数组具有相同的维度,或者在使用 numpy.column_stack() 时具有相同的列数。如果维度不同,可以使用 numpy.reshape() 函数对数组进行重塑。

数组的翻转

在 NumPy 中,也有多种方法可以翻转数组。以下是一些常用的方法:

numpy.flip()

这个函数用于沿指定的轴翻转数组。

   Examples

   --------

   >>> A = np.arange(8).reshape((2,2,2))

   >>> A

   array([[[0, 1],

           [2, 3]],

          [[4, 5],

           [6, 7]]])

   >>> np.flip(A, 0)

   array([[[4, 5],

           [6, 7]],

          [[0, 1],

           [2, 3]]])

   >>> np.flip(A, 1)

   array([[[2, 3],

           [0, 1]],

          [[6, 7],

           [4, 5]]])

   >>> np.flip(A)

   array([[[7, 6],

           [5, 4]],

          [[3, 2],

           [1, 0]]])

   >>> np.flip(A, (0, 2))

   array([[[5, 4],

           [7, 6]],

          [[1, 0],

           [3, 2]]])

   >>> A = np.random.randn(3,4,5)

   >>> np.all(np.flip(A,2) == A[:,:,::-1,...])

   True

numpy.flipud()

这个函数用于垂直方向翻转数组,即行方向翻转。

   Examples

   --------

   >>> A = np.diag([1.0, 2, 3])

   >>> A

   array([[1.,  0.,  0.],

          [0.,  2.,  0.],

          [0.,  0.,  3.]])

   >>> np.flipud(A)

   array([[0.,  0.,  3.],

          [0.,  2.,  0.],

          [1.,  0.,  0.]])

   

   >>> A = np.random.randn(2,3,5)

   >>> np.all(np.flipud(A) == A[::-1,...])

   True

   

   >>> np.flipud([1,2])

   array([2, 1])

numpy.fliplr()

这个函数用于水平方向翻转数组,即列方向翻转。

   Examples

   --------

   >>> A = np.diag([1.,2.,3.])

   >>> A

   array([[1.,  0.,  0.],

          [0.,  2.,  0.],

          [0.,  0.,  3.]])

   >>> np.fliplr(A)

   array([[0.,  0.,  1.],

          [0.,  2.,  0.],

          [3.,  0.,  0.]])

   

   >>> A = np.random.randn(2,3,5)

   >>> np.all(np.fliplr(A) == A[:,::-1,...])

   True

在使用这些函数时,需要确保数组的维度适合进行翻转。

数组的复制

   Examples

   --------

   Create an array x, with a reference y and a copy z:

   

   >>> x = np.array([1, 2, 3])

   >>> y = x

   >>> z = np.copy(x)

   

   Note that, when we modify x, y changes, but not z:

   

   >>> x[0] = 10

   >>> x[0] == y[0]

   True

   >>> x[0] == z[0]

   False

   

   Note that, np.copy clears previously set WRITEABLE=False flag.

   

   >>> a = np.array([1, 2, 3])

   >>> a.flags["WRITEABLE"] = False

   >>> b = np.copy(a)

   >>> b.flags["WRITEABLE"]

   True

   >>> b[0] = 3

   >>> b

   array([3, 2, 3])

   

   Note that np.copy is a shallow copy and will not copy object

   elements within arrays. This is mainly important for arrays

   containing Python objects. The new array will contain the

   same object which may lead to surprises if that object can

   be modified (is mutable):

   

   >>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)

   >>> b = np.copy(a)

   >>> b[2][0] = 10

   >>> a

   array([1, 'm', list([10, 3, 4])], dtype=object)

   

   To ensure all elements within an ``object`` array are copied,

   use `copy.deepcopy`:

   

   >>> import copy

   >>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)

   >>> c = copy.deepcopy(a)

   >>> c[2][0] = 10

   >>> c

   array([1, 'm', list([10, 3, 4])], dtype=object)

   >>> a

   array([1, 'm', list([2, 3, 4])], dtype=object)

数组的排序

   Examples

   --------

   >>> a = np.array([[1,4],[3,1]])

   >>> np.sort(a)                # sort along the last axis

   array([[1, 4],

          [1, 3]])

   >>> np.sort(a, axis=None)     # sort the flattened array

   array([1, 1, 3, 4])

   >>> np.sort(a, axis=0)        # sort along the first axis

   array([[1, 1],

          [3, 4]])

   

   Use the `order` keyword to specify a field to use when sorting a

   structured array:

   

   >>> dtype = [('name', 'S10'), ('height', float), ('age', int)]

   >>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),

   ...           ('Galahad', 1.7, 38)]

   >>> a = np.array(values, dtype=dtype)       # create a structured array

   >>> np.sort(a, order='height')                        # doctest: +SKIP

   array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),

          ('Lancelot', 1.8999999999999999, 38)],

         dtype=[('name', '|S10'), ('height', '

   

   Sort by age, then height if ages are equal:

   

   >>> np.sort(a, order=['age', 'height'])               # doctest: +SKIP

   array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),

          ('Arthur', 1.8, 41)],

         dtype=[('name', '|S10'), ('height', '


数组的数学操作

加法

>>> added_arr = arr1 + arr2

减法

>>> subtracted_arr = arr1 - arr2

乘法

>>> multiplied_arr = arr1 * arr2

除法

>>> divided_arr = arr1 / arr2

幂运算

>>> power_arr = np.power(arr1, arr2)


数组的统计操作

均值

mean = np.mean(arr)

   Examples

   --------

   >>> a = np.array([[1, 2], [3, 4]])

   >>> np.mean(a)

   2.5

   >>> np.mean(a, axis=0)

   array([2., 3.])

   >>> np.mean(a, axis=1)

   array([1.5, 3.5])

   

   In single precision, `mean` can be inaccurate:

   

   >>> a = np.zeros((2, 512*512), dtype=np.float32)

   >>> a[0, :] = 1.0

   >>> a[1, :] = 0.1

   >>> np.mean(a)

   0.54999924

   

   Computing the mean in float64 is more accurate:

   

   >>> np.mean(a, dtype=np.float64)

   0.55000000074505806 # may vary

   

   Specifying a where argument:

   

   >>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]])

   >>> np.mean(a)

   12.0

   >>> np.mean(a, where=[[True], [False], [False]])

   9.0

方差

var = np.var(arr)

   Examples

   --------

   >>> a = np.array([[1, 2], [3, 4]])

   >>> np.var(a)

   1.25

   >>> np.var(a, axis=0)

   array([1.,  1.])

   >>> np.var(a, axis=1)

   array([0.25,  0.25])

   

   In single precision, var() can be inaccurate:

   

   >>> a = np.zeros((2, 512*512), dtype=np.float32)

   >>> a[0, :] = 1.0

   >>> a[1, :] = 0.1

   >>> np.var(a)

   0.20250003

   

   Computing the variance in float64 is more accurate:

   

   >>> np.var(a, dtype=np.float64)

   0.20249999932944759 # may vary

   >>> ((1-0.55)**2 + (0.1-0.55)**2)/2

   0.2025

   

   Specifying a where argument:

   

   >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])

   >>> np.var(a)

   6.833333333333333 # may vary

   >>> np.var(a, where=[[True], [True], [False]])

   4.0

标准差

std = np.std(arr)

   Examples

   --------

   >>> a = np.array([[1, 2], [3, 4]])

   >>> np.std(a)

   1.1180339887498949 # may vary

   >>> np.std(a, axis=0)

   array([1.,  1.])

   >>> np.std(a, axis=1)

   array([0.5,  0.5])

   

   In single precision, std() can be inaccurate:

   

   >>> a = np.zeros((2, 512*512), dtype=np.float32)

   >>> a[0, :] = 1.0

   >>> a[1, :] = 0.1

   >>> np.std(a)

   0.45000005

   

   Computing the standard deviation in float64 is more accurate:

   

   >>> np.std(a, dtype=np.float64)

   0.44999999925494177 # may vary

   

   Specifying a where argument:

   

   >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])

   >>> np.std(a)

   2.614064523559687 # may vary

   >>> np.std(a, where=[[True], [True], [False]])

   2.0

最大值、最小值

max_value = np.max(arr)

   Examples

   --------

   >>> a = np.arange(4).reshape((2,2))

   >>> a

   array([[0, 1],

          [2, 3]])

   >>> np.amax(a)           # Maximum of the flattened array

   3

   >>> np.amax(a, axis=0)   # Maxima along the first axis

   array([2, 3])

   >>> np.amax(a, axis=1)   # Maxima along the second axis

   array([1, 3])

   >>> np.amax(a, where=[False, True], initial=-1, axis=0)

   array([-1,  3])

   >>> b = np.arange(5, dtype=float)

   >>> b[2] = np.NaN

   >>> np.amax(b)

   nan

   >>> np.amax(b, where=~np.isnan(b), initial=-1)

   4.0

   >>> np.nanmax(b)

   4.0

   

   You can use an initial value to compute the maximum of an empty slice, or

   to initialize it to a different value:

   

   >>> np.amax([[-50], [10]], axis=-1, initial=0)

   array([ 0, 10])

   

   Notice that the initial value is used as one of the elements for which the

   maximum is determined, unlike for the default argument Python's max

   function, which is only used for empty iterables.

   

   >>> np.amax([5], initial=6)

   6

   >>> max([5], default=6)

   5

min_value = np.min(arr)

   Examples

   --------

   >>> a = np.arange(4).reshape((2,2))

   >>> a

   array([[0, 1],

          [2, 3]])

   >>> np.amin(a)           # Minimum of the flattened array

   0

   >>> np.amin(a, axis=0)   # Minima along the first axis

   array([0, 1])

   >>> np.amin(a, axis=1)   # Minima along the second axis

   array([0, 2])

   >>> np.amin(a, where=[False, True], initial=10, axis=0)

   array([10,  1])

   

   >>> b = np.arange(5, dtype=float)

   >>> b[2] = np.NaN

   >>> np.amin(b)

   nan

   >>> np.amin(b, where=~np.isnan(b), initial=10)

   0.0

   >>> np.nanmin(b)

   0.0

   

   >>> np.amin([[-50], [10]], axis=-1, initial=0)

   array([-50,   0])

   

   Notice that the initial value is used as one of the elements for which the

   minimum is determined, unlike for the default argument Python's max

   function, which is only used for empty iterables.

   

   Notice that this isn't the same as Python's ``default`` argument.

   

   >>> np.amin([6], initial=5)

   5

   >>> min([6], default=5)

   6


目录
相关文章
|
3天前
|
Python
Python从入门到精通:深入学习面向对象编程——2.1.2继承、封装和多态的概念
Python从入门到精通:深入学习面向对象编程——2.1.2继承、封装和多态的概念
|
3天前
|
存储 索引 Python
Python从入门到精通——1.3.1练习编写简单程序
Python从入门到精通——1.3.1练习编写简单程序
|
4天前
|
开发框架 前端开发 数据库
Python从入门到精通:3.3.2 深入学习Python库和框架:Web开发框架的探索与实践
Python从入门到精通:3.3.2 深入学习Python库和框架:Web开发框架的探索与实践
|
4天前
|
数据采集 数据可视化 数据处理
Python从入门到精通的文章3.3.1 深入学习Python库和框架:数据处理与可视化的利器
Python从入门到精通的文章3.3.1 深入学习Python库和框架:数据处理与可视化的利器
|
4天前
|
Java 数据库连接 数据处理
Python从入门到精通:3.1.2多线程与多进程编程
Python从入门到精通:3.1.2多线程与多进程编程
|
17天前
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。
|
17天前
|
程序员 开发者 Python
Python网络编程基础(Socket编程) 错误处理和异常处理的最佳实践
【4月更文挑战第11天】在网络编程中,错误处理和异常管理不仅是为了程序的健壮性,也是为了提供清晰的用户反馈以及优雅的故障恢复。在前面的章节中,我们讨论了如何使用`try-except`语句来处理网络错误。现在,我们将深入探讨错误处理和异常处理的最佳实践。
|
2天前
|
机器学习/深度学习 数据挖掘 API
pymc,一个灵活的的 Python 概率编程库!
pymc,一个灵活的的 Python 概率编程库!
5 1
|
2天前
|
人工智能 算法 调度
uvloop,一个强大的 Python 异步IO编程库!
uvloop,一个强大的 Python 异步IO编程库!
10 2
|
2天前
|
机器学习/深度学习 人工智能 数据可视化
Python:探索编程之美
Python:探索编程之美
9 0