Java每日一练(20230407) 数据流变为多个不相交区间、最小栈、柱状图中最大的矩形

简介: Java每日一练(20230407) 数据流变为多个不相交区间、最小栈、柱状图中最大的矩形

1. 数据流变为多个不相交区间

给你一个由非负整数 a1, a2, ..., an 组成的数据流输入,请你将到目前为止看到的数字总结为不相交的区间列表。

实现 SummaryRanges 类:

  • SummaryRanges() 使用一个空数据流初始化对象。
  • void addNum(int val) 向数据流中加入整数 val
  • int[][] getIntervals() 以不相交区间 [starti, endi] 的列表形式返回对数据流中整数的总结。

示例:

输入:

["SummaryRanges", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals"]
[[], [1], [], [3], [], [7], [], [2], [], [6], []]

输出:

[null, null, [[1, 1]], null, [[1, 1], [3, 3]], null, [[1, 1], [3, 3], [7, 7]], null, [[1, 3], [7, 7]], null, [[1, 3], [6, 7]]]

解释:

SummaryRanges summaryRanges = new SummaryRanges(); 
summaryRanges.addNum(1); // arr = [1] 
summaryRanges.getIntervals(); // 返回 [[1, 1]] 
summaryRanges.addNum(3); // arr = [1, 3] 
summaryRanges.getIntervals(); // 返回 [[1, 1], [3, 3]] 
summaryRanges.addNum(7); // arr = [1, 3, 7] 
summaryRanges.getIntervals(); // 返回 [[1, 1], [3, 3], [7, 7]] 
summaryRanges.addNum(2); // arr = [1, 2, 3, 7] 
summaryRanges.getIntervals(); // 返回 [[1, 3], [7, 7]] 
summaryRanges.addNum(6); // arr = [1, 2, 3, 6, 7] 
summaryRanges.getIntervals(); // 返回 [[1, 3], [6, 7]]


提示:

  • 0 <= val <= 10^4
  • 最多调用 addNumgetIntervals 方法 3 * 10^4

进阶:如果存在大量合并,并且与数据流的大小相比,不相交区间的数量很小,该怎么办?

出处:

https://edu.csdn.net/practice/25006605

代码:

class SummaryRanges {
    private final TreeSet<Integer> tree = new TreeSet<>();
    public void addNum(int val) {
        tree.add(val);
    }
    public int[][] getIntervals() {
        ArrayList<int[]> result = new ArrayList<>(1 << 2);
        Iterator<Integer> iterator = tree.iterator();
        int[] array = new int[tree.size()];
        int i = 0;
        while (iterator.hasNext())
            array[i++] = iterator.next();
        int length = array.length;
        if (length == 0)
            return result.toArray(new int[0][]);
        int start = array[0];
        for (i = 0; i < length; ++i) {
            if (i + 1 < length && array[i + 1] - array[i] != 1) {
                result.add(new int[] { start, array[i] });
                start = array[i + 1];
            } else if (i + 1 == length) {
                result.add(new int[] { start, array[i] });
            }
        }
        return result.toArray(new int[result.size()][]);
    }
}

输出:

略,示例解释部分即测试代码


2. 最小栈

设计一个支持 pushpoptop 操作,并能在常数时间内检索到最小元素的栈。

  • push(x) —— 将元素 x 推入栈中。
  • pop() —— 删除栈顶的元素。
  • top() —— 获取栈顶元素。
  • getMin() —— 检索栈中的最小元素。

示例:

输入:

["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]

输出:

[null,null,null,null,-3,null,0,-2]

解释:

MinStack minStack = new MinStack(); 
minStack.push(-2); 
minStack.push(0); 
minStack.push(-3); 
minStack.getMin(); //--> 返回 -3. 
minStack.pop(); 
minStack.top(); //--> 返回 0. 
minStack.getMin(); //--> 返回 -2.


提示:

  • poptopgetMin 操作总是在 非空栈 上调用。

出处:

https://edu.csdn.net/practice/25006606

代码:

class MinStack {
    Stack<Integer> data_stack;
    Stack<Integer> min_stack;
    /** initialize your data structure here. */
    public MinStack() {
        data_stack = new Stack<Integer>();
        min_stack = new Stack<Integer>();
    }
    public void push(int x) {
        data_stack.push(x);
        if (min_stack.isEmpty()) {
            min_stack.push(x);
        } else {
            if (x > min_stack.peek()) {
                x = min_stack.peek();
            }
            min_stack.push(x);
        }
    }
    public void pop() {
        data_stack.pop();
        min_stack.pop();
    }
    public int top() {
        return data_stack.peek();
    }
    public int getMin() {
        return min_stack.peek();
    }
}
/**
 * Your MinStack object will be instantiated and called as such:
 * MinStack obj = new MinStack();
 * obj.push(x);
 * obj.pop();
 * int param_3 = obj.top();
 * int param_4 = obj.getMin();
 */

输出:

略,示例解释部分即测试代码


3. 柱状图中最大的矩形

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]

图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。

示例:

输入: [2,1,5,6,2,3]

输出: 10

以下程序实现了这一功能,请你填补空白处内容:

```Java
class Solution {
    public int largestRectangleArea(int[] heights) {
        int length = heights.length;
        if (length == 0) {
            return 0;
        }
        int maxSize = 0;
        for (int i = 0; i < length; i++) {
            int nowHeight = heights[i];
            int nowWidth = 0;
            for (int j = i; j < length; j++) {
                ___________________;
                nowWidth++;
                if (maxSize < nowHeight * nowWidth) {
                    maxSize = nowHeight * nowWidth;
                }
            }
        }
        return maxSize;
    }
}
```

出处:

https://edu.csdn.net/practice/25006607

代码1: 暴力枚举

import java.util.*;
public class largestRectangleArea {
    public static class Solution {
        public int largestRectangleArea(int[] heights) {
            int length = heights.length;
            if (length == 0) {
                return 0;
            }
            int maxSize = 0;
            for (int i = 0; i < length; i++) {
                int nowHeight = heights[i];
                int nowWidth = 0;
                for (int j = i; j < length; j++) {
                    if (heights[j] < nowHeight) {
                        nowHeight = heights[j];
                    }
                    nowWidth++;
                    if (maxSize < nowHeight * nowWidth) {
                        maxSize = nowHeight * nowWidth;
                    }
                }
            }
            return maxSize;
        }
    }
    public static void main(String[] args) {
        Solution s = new Solution();
        int[] heights = {2,1,5,6,2,3};
        System.out.println(s.largestRectangleArea(heights));
    }
}

输出:

10

代码2:单调栈

import java.util.*;
public class largestRectangleArea {
    public static class Solution {
        public int largestRectangleArea(int[] heights) {
            int n = heights.length;
            int[] left = new int[n];  // 存储每个矩形左边第一个小于它的矩形的下标
            int[] right = new int[n];  // 存储每个矩形右边第一个小于它的矩形的下标
            Stack<Integer> stack = new Stack<>();  // 单调栈,存储矩形的下标
            for (int i = 0; i < n; i++) {
                while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
                    stack.pop();
                }
                left[i] = stack.isEmpty() ? -1 : stack.peek();
                stack.push(i);
            }
            stack.clear();
            for (int i = n - 1; i >= 0; i--) {
                while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
                    stack.pop();
                }
                right[i] = stack.isEmpty() ? n : stack.peek();
                stack.push(i);
            }
            int maxArea = 0;
            for (int i = 0; i < n; i++) {
                int area = (right[i] - left[i] - 1) * heights[i];  // 计算以当前矩形为高的最大面积
                maxArea = Math.max(maxArea, area);
            }
            return maxArea;
        }
    }
    public static void main(String[] args) {
        Solution s = new Solution();
        int[] heights = {2,1,5,6,2,3};
        System.out.println(s.largestRectangleArea(heights));
    }
}

🌟 每日一练刷题专栏 🌟

持续,努力奋斗做强刷题搬运工!

👍 点赞,你的认可是我坚持的动力!

🌟 收藏,你的青睐是我努力的方向!

评论,你的意见是我进步的财富!  

主页:https://hannyang.blog.csdn.net/


目录
相关文章
|
3月前
|
Java API 开发工具
【Azure Developer】Java代码实现获取Azure 资源的指标数据却报错 "invalid time interval input"
在使用 Java 调用虚拟机 API 获取指标数据时,因本地时区设置非 UTC,导致时间格式解析错误。解决方法是在代码中手动指定时区为 UTC,使用 `ZoneOffset.ofHours(0)` 并结合 `withOffsetSameInstant` 方法进行时区转换,从而避免因时区差异引发的时间格式问题。
207 3
|
4月前
|
数据采集 JSON Java
Java爬虫获取1688店铺所有商品接口数据实战指南
本文介绍如何使用Java爬虫技术高效获取1688店铺商品信息,涵盖环境搭建、API调用、签名生成及数据抓取全流程,并附完整代码示例,助力市场分析与选品决策。
|
4月前
|
数据采集 存储 前端开发
Java爬虫性能优化:多线程抓取JSP动态数据实践
Java爬虫性能优化:多线程抓取JSP动态数据实践
|
3月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
235 16
|
8月前
|
自然语言处理 Java 关系型数据库
Java|小数据量场景的模糊搜索体验优化
在小数据量场景下,如何优化模糊搜索体验?本文分享一个简单实用的方案,虽然有点“土”,但效果还不错。
175 0
|
12月前
|
前端开发 JavaScript Java
java常用数据判空、比较和类型转换
本文介绍了Java开发中常见的数据处理技巧,包括数据判空、数据比较和类型转换。详细讲解了字符串、Integer、对象、List、Map、Set及数组的判空方法,推荐使用工具类如StringUtils、Objects等。同时,讨论了基本数据类型与引用数据类型的比较方法,以及自动类型转换和强制类型转换的规则。最后,提供了数值类型与字符串互相转换的具体示例。
650 3
|
传感器 分布式计算 安全
Java 大视界 -- Java 大数据在智能安防入侵检测系统中的多源数据融合与分析技术(171)
本文围绕 Java 大数据在智能安防入侵检测系统中的应用展开,剖析系统现状与挑战,阐释多源数据融合及分析技术,结合案例与代码给出实操方案,提升入侵检测效能。
|
9月前
|
前端开发 Cloud Native Java
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
|
10月前
|
数据采集 JSON Java
Java爬虫获取微店快递费用item_fee API接口数据实现
本文介绍如何使用Java开发爬虫程序,通过微店API接口获取商品快递费用(item_fee)数据。主要内容包括:微店API接口的使用方法、Java爬虫技术背景、需求分析和技术选型。具体实现步骤为:发送HTTP请求获取数据、解析JSON格式的响应并提取快递费用信息,最后将结果存储到本地文件中。文中还提供了完整的代码示例,并提醒开发者注意授权令牌、接口频率限制及数据合法性等问题。
|
10月前
|
存储 IDE Java
java设置栈内存大小
在Java应用中合理设置栈内存大小是确保程序稳定性和性能的重要措施。通过JVM参数 `-Xss`,可以灵活调整栈内存大小,以适应不同的应用场景。本文介绍了设置栈内存大小的方法、应用场景和注意事项,希望能帮助开发者更好地管理Java应用的内存资源。
501 4

推荐镜像

更多