Python 教程之 Pandas(15)—— 使用 pandas.read_csv() 读取 csv

简介: Python 教程之 Pandas(15)—— 使用 pandas.read_csv() 读取 csv

Python 是一种用于进行数据分析的出色语言,主要是因为以数据为中心的 Python 包的奇妙生态系统。Pandas 就是其中之一,它使导入和分析数据变得更加容易。

大多数用于分析的数据以表格格式的形式提供,例如 Excel 和逗号分隔文件 (CSV)。要访问 csv 文件中的数据,我们需要一个函数 read_csv() 以数据框的形式检索数据。在使用这个功能之前,我们必须导入 pandas 库。

导入 Pandas 库:

import pandas as pd

read_csv() 函数用于从 csv 文件中检索数据。read_csv() 方法的语法是:

pd.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, 
             usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, 
             dtype=None, engine=None, converters=None, true_values=None, false_values=None, 
             skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, 
             na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, 
             keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', 
             thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, 
             encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, 
             doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)

代码 #1 从 csv 文件中检索数据

# Import pandas
import pandas as pd
# 读取csv文件
pd.read_csv("filename.csv")

这是带有默认值的参数列表。并非所有这些都很重要,但记住这些实际上可以节省自己执行某些功能的时间。通过在 jupyter notebook 中按 shift + tab 可以查看任何函数的参数。下面给出了有用的和它们的用法:


  • filepath_or_buffer:这是要使用此函数检索的文件的位置。它接受文件的任何字符串路径或 URL。
  • sep:表示分隔符,默认为 ', ',如 csv(逗号分隔值)。
  • header:它接受 int、int 列表、行号用作列名和数据的开头。如果没有传递名称,即header=None,那么它将显示第一列为0,第二列显示为1,以此类推。
  • usecols:用于仅从 csv 文件中检索选定的列。
  • nrows:表示要从数据集中显示的行数。
  • index_col:如果没有,则没有索引号与记录一起显示。  
  • 挤压:如果为真且仅传递一列,则返回熊猫系列。
  • skiprows:跳过新数据框中传递的行。
  • 名称:它允许检索具有新名称的列。
范围 Use
filepath_or_buffer 文件的 URL 或目录位置
sep 代表分隔符,默认为 ', ' 如 csv(逗号分隔值)
index_col 将传递的列作为索引而不是 0、1、2、3…r   
header 将传递的 row/s[int/int list] 作为标题  
use_cols 仅使用传递的 col[string list] 来制作数据框
squeeze 如果为 true 且仅传递一列,则返回 pandas 系列
skiprows 跳过新数据框中传递的行

Code #2 :

# 导入 Pandas 库
import pandas as pd
pd.read_csv(filepath_or_buffer = "pokemon.csv")
# 使传递的行标题
pd.read_csv("pokemon.csv", header =[1, 2])
# 将传递的列作为索引而不是 0、1、2、3....
pd.read_csv("pokemon.csv", index_col ='Type')
# 仅将传递的 cols 用于数据框
pd.read_csv("pokemon.csv", usecols =["Type"])
# 如果只有一列,则返回熊猫系列
pd.read_csv("pokemon.csv", usecols =["Type"], squeeze = True)
# 跳过新系列中传递的行
pd.read_csv("pokemon.csv", skiprows = [1, 2, 3, 4])


目录
相关文章
|
2天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
9 2
|
2天前
|
Python
SciPy 教程 之 SciPy 图结构 7
《SciPy 教程 之 SciPy 图结构 7》介绍了 SciPy 中处理图结构的方法。图是由节点和边组成的集合,用于表示对象及其之间的关系。scipy.sparse.csgraph 模块提供了多种图处理功能,如 `breadth_first_order()` 方法可按广度优先顺序遍历图。示例代码展示了如何使用该方法从给定的邻接矩阵中获取广度优先遍历的顺序。
11 2
|
3天前
|
算法 Python
SciPy 教程 之 SciPy 图结构 5
SciPy 图结构教程,介绍图的基本概念和SciPy中处理图结构的模块scipy.sparse.csgraph。重点讲解贝尔曼-福特算法,用于求解任意两点间最短路径,支持有向图和负权边。通过示例演示如何使用bellman_ford()方法计算最短路径。
12 3
|
3天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
11 1
|
4天前
|
算法 索引 Python
SciPy 教程 之 SciPy 图结构 3
SciPy 图结构教程:介绍图的基本概念、节点和边的定义,以及如何使用 SciPy 的 `scipy.sparse.csgraph` 模块处理图结构。重点讲解 Dijkstra 最短路径算法及其在 SciPy 中的应用,包括 `dijkstra()` 方法的参数设置和使用示例。
10 0
|
4天前
|
Python
SciPy 教程 之 SciPy 图结构 2
《SciPy 教程 之 SciPy 图结构 2》介绍了图结构作为算法学中的重要框架,通过 `scipy.sparse.csgraph` 模块处理图结构。文章示例展示了如何使用 `connected_components()` 方法查找所有连接组件,通过创建稀疏矩阵并调用该方法实现。
7 0
|
5天前
|
算法 Python
SciPy 教程 之 SciPy 图结构 1
SciPy 图结构教程介绍了图的基本概念及其在算法中的应用。图由节点和边组成,节点代表对象,边表示对象间的连接。SciPy 的 `scipy.sparse.csgraph` 模块提供了处理图结构的工具。邻接矩阵用于表示节点间的连接关系,分为有向图和无向图两种类型。无向图的边是双向的,而有向图的边则有明确的方向。
15 0
|
5天前
|
存储 Python
SciPy 教程 之 SciPy 稀疏矩阵 5
SciPy 稀疏矩阵教程介绍了稀疏矩阵的概念及其在科学计算中的应用。SciPy 的 `scipy.sparse` 模块提供了处理稀疏矩阵的功能,主要使用 CSC(压缩稀疏列)和 CSR(压缩稀疏行)两种格式。通过示例展示了如何创建 CSR 矩阵、查看非零元素及转换为 CSC 格式。
17 0
|
7天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
27 0
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
66 0

热门文章

最新文章