Vision Mamba:将Mamba应用于计算机视觉任务的新模型

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: Mamba是LLM的一种新架构,与Transformers等传统模型相比,它能够更有效地处理长序列。就像VIT一样现在已经有人将他应用到了计算机视觉领域,让我们来看看最近的这篇论文“Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Models,”

对于VIT来说,Transformers虽然功能强大,但通常需要大量的计算资源,特别是对于高分辨率图像。Vision Mamba旨在通过提供更有效的替代方案来解决这个问题。

Vision Mamba vs Transformers

这篇论文主要由华中科技大学、地平线机器人、北京人工智能研究院的研究人员贡献,深入研究了Mamba 是如何处理视觉任务的。Mamba的效率来自于它的双向状态空间模型,与传统的Transformer模型相比,理论上可以更快地处理图像数据。

处理图像本质上比处理文本要复杂得多。因为图像不仅仅是像素的序列;它们还包含复杂的模式,变化的空间关系,以及理解整体环境的需要。这种复杂性使得视觉数据的有效处理成为一项具有挑战性的任务,特别是在规模和高分辨率下。

Vision Mamba (Vim)

Mamba块是Vim的一个关键特性,通过使用位置嵌入标记图像序列,并使用双向状态空间模型压缩视觉表示,Vision Mamba可以有效地捕获图像的全局上下文。这种方法解决了可视数据固有的位置敏感性,这是传统Transformer模型经常遇到的一个关键问题,特别是在更高分辨率下。

Vision Mamba Encoder

Vim模型首先将输入图像划分为小块,然后将小块投影到令牌中。这些令牌随后被输入到Vim编码器中。对于像ImageNet分类这样的任务,在令牌标记序列中添加了一个额外的可学习分类标记(这个标记是重BERT开始一致这样使用的)。与用于文本序列建模的Mamba模型不同,Vim编码器在正向和反向两个方向上处理标记序列。

还记得双向LSTM么,Vim的一个突出特点是它的双向处理能力。与许多以单向方式处理数据的模型不同,Vim的编码器以向前和向后的方向处理标记。双向模型允许对图像上下文进行更丰富的理解,这是准确图像分类和分割的关键因素。

基准测试结果及表现

在ImageNet分类、COCO对象检测和ADE20K语义分割方面,Vim不仅表现出更高的性能,而且还表现出更高的效率。例如,在处理高分辨率图像(1248 × 1248)时,Vim比DEIT快2.8倍,同时节省了86%的GPU内存。考虑到在高分辨率图像处理中经常遇到的内存限制,这是一个非常大的进步。

与VIT的比较分析

这篇论文并没有仅仅停留在比较VIM和DEIT。它还包括与VIT的比较。虽然VIT确实是一个强大的模型,但VIM在效率和性能上仍然超过它,特别是随着分辨率的增加。这种比较为评估VIM的能力提供了更广泛的背景。

高分辨率图像处理

论文还强调了高分辨率图像处理在各个领域的重要性。例如在卫星图像中,高分辨率对于详细分析和准确结论至关重要。同样在PCB制造等工业环境中,在高分辨率图像中检测微小故障的能力对于质量控制至关重要。VIM在处理此类任务方面的也非常有可比性。

总结

论文介绍了一种将Mamba用于视觉任务的方法,该方法利用双向状态空间模型(ssm)进行全局视觉上下文建模和位置嵌入。这种方法标志着传统的注意力机制可能会退出历史的舞台,因为VIM展示了一种有效的方法来掌握视觉数据的位置上下文,而不需要基于transformer的注意机制。

VIM以其次二次的时间计算和线性内存复杂性与Transformer模型中典型的二次增长形成鲜明对比。这一点使得VIM特别适合处理高分辨率图像。

通过对ImageNet分类等基准的全面测试,验证了VIM的性能和效率,证明可以将其应用在计算机视觉领域强大模型的地位。

论文地址:

https://avoid.overfit.cn/post/7171ae82866d4b07853266073485e8cb

作者:azhar

目录
相关文章
|
5月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
618 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
6月前
|
存储 人工智能 自然语言处理
关于计算机视觉中的自回归模型,这篇综述一网打尽了
这篇综述文章全面介绍了自回归模型在计算机视觉领域的应用和发展。文章首先概述了视觉中的序列表示和建模基础知识,随后根据表示策略将视觉自回归模型分为基于像素、标记和尺度的三类框架,并探讨其与生成模型的关系。文章详细阐述了自回归模型在图像、视频、3D及多模态生成等多方面的应用,列举了约250篇参考文献,并讨论了其在新兴领域的潜力和面临的挑战。此外,文章还建立了一个GitHub存储库以整理相关论文,促进了学术合作与知识传播。论文链接:https://arxiv.org/abs/2411.05902
182 1
|
11月前
|
机器学习/深度学习 算法 PyTorch
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
263 1
|
10月前
|
机器学习/深度学习 数据采集 算法
隧道裂纹识别:基于计算机视觉与机器学习的应用分享
隧道裂纹的自动检测通过深度学习与计算机视觉技术实现,替代了传统人工检查,提高了检测精度与效率。本文介绍了一套完整的裂纹检测流程,包括图像采集、预处理、裂纹检测与标定、后处理及结果展示,提供了图像处理与深度学习模型的基本代码框架,旨在帮助读者掌握隧道裂纹检测的实际应用方法。
|
机器学习/深度学习 人工智能 自然语言处理
深度学习与计算机视觉的结合:技术趋势与应用
深度学习与计算机视觉的结合:技术趋势与应用
599 9
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
传感器 自动驾驶 安全
计算机视觉在自动驾驶中的应用:技术解析与未来展望
【8月更文挑战第4天】自动驾驶依托计算机视觉实现环境感知与决策,通过目标检测、跟踪及车道识别等技术保障行车安全与效率。面对数据处理、场景理解等挑战,未来技术将持续优化,深化智能驾驶体验,引领交通行业变革。
|
机器学习/深度学习 计算机视觉
AIGC核心技术——计算机视觉(CV)预训练大模型
【1月更文挑战第13天】AIGC核心技术——计算机视觉(CV)预训练大模型
965 3
AIGC核心技术——计算机视觉(CV)预训练大模型
|
机器学习/深度学习 PyTorch 算法框架/工具
Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
308 0