【Linux系统编程】进程状态

简介: 【Linux系统编程】进程状态

介绍


       进程的状态指的是进程在执行过程中所处的状态。进程的状态随着进程的执行和外界条件的变化而转换。我们可用 kill 命令来进程控制进程的状态。


       kill中的 kill -l 指令用于查看系统中定义的所有信号及其对应的编号。这些信号可以用于 kill 命令来向进程发送特定的信号控制其状态。例如,kill - 9 命令会向进程发送 SIGKILL 信号,强制终止进程,kill -19 命令会向进程发送 SIGSTOP 信号,使进程进入暂停状态,如同 Ctrl+Z 组合键的效果,kill -18 命令用于向进程发送 SIGCONT 信号,使进程从暂停状态恢复执行,如同 Ctrl+C 组合键的效果。


系统下的进程主流状态


       进程在系统中主流的四个主要状态:运行状态、排队状态、阻塞状态、挂起状态。


运行状态


       首先,要说明,系统内部的所有进程不是一次性执行完毕的,而是在内部排队等待某种资源。


       进程只要在运行队列里或正在被CUP正在执行时,此进程就处于运行状态。部分教材中可能会说明有创建状态、就绪状态、阻塞状态等,这几种状态其实都是跟进程放入运行队列有关。


排队状态


       由于大部分计算机中只有一个CUP,而一个CUP一次只能运行一个进程队列,所以在Linux系统内核中,所有进入状态的进程必须依次“ 排队 ”等待,这里的“ 排队 ”并不是进程自己在“ 排队 ”等待,而是进程的 tast_struct 结构体在进行“ 排队”等待被CUP执行。


       其实不光是等待CPU执行时需要排队,在进程等待某种资源时,也会处于排队状态。如外设等。这里的排队等待,不像一般数据结构中的排队等待,而是将 task_struct 结构体嵌入到运行队列中,系统通过地址偏移量来进行访问里面的属性数据。具体实现如下:


3fc75cf5b2114e7bad0a493eb8b8f8ea.png


       总的来说,进程的排队状态是指进程在等待被执行或等待获取资源时所处的一种状态。在排队状态下,进程会被放入相应的队列中,等待其前面的进程释放资源或完成其任务,当多个进程同时请求系统资源时,操作系统会根据一定的调度算法将这些进程按照一定的顺序排列,以便按照一定的优先级逐个分配资源。


阻塞状态


       阻塞状态是进程的执行过程中一种暂停状态,此时进程放弃处理机而处于暂停状态。当进程处于阻塞状态时会排成一个队列,形成这种情况通常是因为进程在等待某个事件的发生。如,当我们的进程在进行等待软硬件资源的时候,资源如果没有就绪,我们的进程task_struct 只能将自己设置为阻塞状态,并将自己的pcb连入等待的资源提供的等待队列。


挂起状态


       进程的挂起状态是指一个进程由于某些原因暂时不能执行,而被系统挂起来,等待以后执行。在这种状态下,进程不会占用内存空间,也不会被调度执行,进程只是被存储在磁盘上。这种状态通常发生在系统资源不足或者进程等待某些事件时发生。当条件允许时,被挂起的进程就会被操作系统再次调回内存,重新进入等待被执行的状态,即就绪态。


前台进程与后台进程  


       前台进程和后台进程是操作系统中的两种进程类型,它们在运行状态和行为上存在显著差异。一般情况下,进程中的可执行程序直接运行是前台进程,当在执行可执行程序时,在后面加上“ & ”符号,就变成了后台进程。前台进程和后台进程在进程状态符观察出。当查看进程状态时,若状态符后面有“ + ”号,此进程表示前台进程,若状态符后面没有“ + ”号,此进程表示后台进程。    


       通常情况下,前台进程可以直接使用键盘上的 Ctrl+C 来终止,但后台进程则需要使用特定的命令,如“ kill -9 [PID] ”来终止。因此,当我们设为后台进程时,用户必须要获取该进程的PID。


Linux内核源代码的进程状态


       在了解进程状态时,首先要明白系统内部定义的进程状态。在Linux内核中定义状态的源代码如下:


/*
* The task state array is a strange "bitmap" of
* reasons to sleep. Thus "running" is zero, and
* you can test for combinations of others with
* simple bit tests.
*/
static const char* const task_state_array[] = {  //下面的大写首字母代表状态
"R (running)", /* 0 */
"S (sleeping)", /* 1 */
"D (disk sleep)", /* 2 */
"T (stopped)", /* 4 */
"t (tracing stop)", /* 8 */
"X (dead)", /* 16 */
"Z (zombie)", /* 32 */
};


       R运行状态:表示进程正在处于系统的运行状态,与上面的运行状态效果一样,并不意味着进程一定在运行中,它表明进程要么是在运行中要么在运行队列里。


       S睡眠状态:进程在等待某件事件完成而进入睡眠。这种睡眠状态如同阻塞状态,有时候也叫做可中断睡眠,可直接用键盘进行中断。


       D磁盘休眠状态:这种状态有时候也叫不可中断睡眠状态,它用于资源管理。当进程的PCB指针放入磁盘结构体的队列中时,如果内存紧张,操作系统可能需要终止一些后台进程来缓解内存压力。但是,如果正在写入磁盘的数据很重要,直接终止可能会导致不良后果。此时将进程置于D状态可以确保即使在内存紧张的情况下,操作系统也不会终止它,直到IO操作完成。


       T停止状态:表示进程被暂定,如同 kill -19 命令停止运行进程。此状态也可理解为阻塞状态的分支。


       t停止状态:表示进程处于跟踪状态而暂定,通常用于调试目的。


注意:状态T和状态t都是表示进程被停止,其中,状态T停止是常规控制停止,而状态t停止是因为深入跟踪导致进程停止,通常用于调试。


       X死亡状态:此状态表示进程已经结束,并且可以被回收的状态。当一个进程完全结束执行,并且系统已经回收了其资源时,该进程就会进入X状态,因此,这个状态只是一个返回状态,我们不会在任务列表里看到这个状态。


       Z僵尸状态:表示一个进程已经结束执行,但其父进程还没有读取它的退出状态信息。在这种情况下,该进程会以终止状态保持在进程表中,等待父进程读取其退出状态代码。


       当一个进程退出时,它会将退出信息保存在task_struct中,供父进程或操作系统读取。如果父进程在子进程退出后仍然存在,但没有读取子进程的退出状态信息,子进程就会进入Z状态。处于Z状态的进程不会占用CPU资源,但会占用进程表中的一个槽位和内存,直到其父进程读取了其退出状态信息并对其进行回收,因此,僵尸进程可能会造成内存资源的浪费,有一定的危害。以下代码的子进程就为僵尸进程。


#include <iostream>
#include <unistd.h>
using namespace std;
int main()
{
    pid_t id = fork();
    if (id == 0)  //子进程
    {
        int n = 5;
        while (n)
        {
            cout << "PID: " << getpid() << "   " << "PPID: " << getppid() << endl;
            sleep(1);
            n--;
        }
        exit(0);  //子进程退出
    }
    while (1)  //父进程运行
    {
        cout << "PID: " << getpid() << "   " << "PPID: " << getppid() << endl;
        sleep(1);
    }
    return 0;
}

孤儿进程


       孤儿进程是指一个进程的父进程已经终止,而该进程还在运行。


       由于孤儿进程原有的父进程已不存在,所以,孤儿进程通常由init进程(进程号为1)收养,并由init进程对它们完成状态收集工作。因此,孤儿进程并不会有什么危害。以下是孤儿进程的代码


#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{
    pid_t id = fork();
    if (id < 0) 
    {
        perror("fork");
        return 1;
    }
    else if (id == 0)   //子进程
    {
        cout << "I am child, pid : " << getpid() << endl;
        sleep(5);
    }
    else  //父进程
    {
        cout << "I am child, pid : " << getpid() << endl;
        sleep(5);
        exit(0);
    }
    return 0;
}
相关文章
|
11天前
|
Linux 应用服务中间件 Shell
linux系统服务二!
本文详细介绍了Linux系统的启动流程,包括CentOS 7的具体启动步骤,从BIOS自检到加载内核、启动systemd程序等。同时,文章还对比了CentOS 6和CentOS 7的启动流程,分析了启动过程中的耗时情况。接着,文章讲解了Linux的运行级别及其管理命令,systemd的基本概念、优势及常用命令,并提供了自定义systemd启动文件的示例。最后,文章介绍了单用户模式和救援模式的使用方法,包括如何找回忘记的密码和修复启动故障。
32 5
linux系统服务二!
|
11天前
|
缓存 监控 Linux
linux进程管理万字详解!!!
本文档介绍了Linux系统中进程管理、系统负载监控、内存监控和磁盘监控的基本概念和常用命令。主要内容包括: 1. **进程管理**: - **进程介绍**:程序与进程的关系、进程的生命周期、查看进程号和父进程号的方法。 - **进程监控命令**:`ps`、`pstree`、`pidof`、`top`、`htop`、`lsof`等命令的使用方法和案例。 - **进程管理命令**:控制信号、`kill`、`pkill`、`killall`、前台和后台运行、`screen`、`nohup`等命令的使用方法和案例。
39 4
linux进程管理万字详解!!!
|
11天前
|
Linux 应用服务中间件 Shell
linux系统服务!!!
本文详细介绍了Linux系统(以CentOS7为例)的启动流程,包括BIOS自检、读取MBR信息、加载Grub菜单、加载内核及驱动程序、启动systemd程序加载必要文件等五个主要步骤。同时,文章还对比了CentOS6和CentOS7的启动流程图,并分析了启动流程的耗时。此外,文中还讲解了Linux的运行级别、systemd的基本概念及其优势,以及如何使用systemd管理服务。最后,文章提供了单用户模式和救援模式的实战案例,帮助读者理解如何在系统启动出现问题时进行修复。
33 3
linux系统服务!!!
|
2天前
|
存储 运维 监控
深入Linux基础:文件系统与进程管理详解
深入Linux基础:文件系统与进程管理详解
33 8
|
2天前
|
Linux
在 Linux 系统中,“cd”命令用于切换当前工作目录
在 Linux 系统中,“cd”命令用于切换当前工作目录。本文详细介绍了“cd”命令的基本用法和常见技巧,包括使用“.”、“..”、“~”、绝对路径和相对路径,以及快速切换到上一次工作目录等。此外,还探讨了高级技巧,如使用通配符、结合其他命令、在脚本中使用,以及实际应用案例,帮助读者提高工作效率。
11 3
|
2天前
|
安全 网络协议 Linux
本文详细介绍了 Linux 系统中 ping 命令的使用方法和技巧,涵盖基本用法、高级用法、实际应用案例及注意事项。
本文详细介绍了 Linux 系统中 ping 命令的使用方法和技巧,涵盖基本用法、高级用法、实际应用案例及注意事项。通过掌握 ping 命令,读者可以轻松测试网络连通性、诊断网络问题并提升网络管理能力。
9 3
|
5天前
|
安全 Linux 数据安全/隐私保护
在 Linux 系统中,查找文件所有者是系统管理和安全审计的重要技能。
在 Linux 系统中,查找文件所有者是系统管理和安全审计的重要技能。本文介绍了使用 `ls -l` 和 `stat` 命令查找文件所有者的基本方法,以及通过文件路径、通配符和结合其他命令的高级技巧。还提供了实际案例分析和注意事项,帮助读者更好地掌握这一操作。
15 6
|
2天前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
11 2
|
5天前
|
Linux
在 Linux 系统中,`find` 命令是一个强大的文件查找工具
在 Linux 系统中,`find` 命令是一个强大的文件查找工具。本文详细介绍了 `find` 命令的基本语法、常用选项和具体应用示例,帮助用户快速掌握如何根据文件名、类型、大小、修改时间等条件查找文件,并展示了如何结合逻辑运算符、正则表达式和排除特定目录等高级用法。
22 5
|
6天前
|
机器学习/深度学习 自然语言处理 Linux
Linux 中的机器学习:Whisper——自动语音识别系统
本文介绍了先进的自动语音识别系统 Whisper 在 Linux 环境中的应用。Whisper 基于深度学习和神经网络技术,支持多语言识别,具有高准确性和实时处理能力。文章详细讲解了在 Linux 中安装、配置和使用 Whisper 的步骤,以及其在语音助手、语音识别软件等领域的应用场景。
23 5