【Python数据结构与算法】—— 搜索算法 | 期末复习不挂科系列

简介: 【Python数据结构与算法】—— 搜索算法 | 期末复习不挂科系列



搜索

定义

搜索是指从元素集合中找到特定元素算法过程

搜索过程通常返回True 或 False 来表示元素是否在集合中。

有时也可以修改搜索过程,使它返回目标元素的位置。

为了更好的打好算法基础,我们这次先探索搜索的元素是否存在这一问题。


关键字-in

in是Python中的关键字,用于判断一个元素是否存在于一个容器中。可以用于列表、元组、字典、集合等数据类型。它可以被用于for循环语句 和 if语句中。

我们之前做Python每日一练时我曾科普过Python中 我们可以通过运算符 —— in 去检查元素是否在列表中。

print(15 in [1,2,3])
print(15 in [1,2,3,15])

运行结果:


顺序搜索

线性结构(数组、链表、栈、队列等)都有下标。每个数据项都有一个相对于其它数据项的位置。

Python的列表 ,数据项的位置就是其下标。

因为下标有序的,So 我们能够进行 顺序访问顺序搜索

无序表的顺序搜索过程

下图展示了顺序搜索的过程。

无序表的顺序搜索代码实现

def sequential_search(a_list,item):
    pos = 0
    while pos < len(a_list):
        if a_list[pos] == item:
            return  True
        pos += 1
    return  False
print(sequential_search([1,2,4,5,9],5))

从列表第一个元素开始, 沿着下表顺序逐个查看,直到找到目标元素或者到达列表末尾。

若查完列表后仍未找到目标元素,则说明目标元素不在列表中。

分析顺序搜索算法

分析搜索算法前,首先需要先定义 计算的基本单元---解决问题过程中不断重复的的某一步

对搜索来说,记录 比较的次数 是合理的 性能指标。

每次比较只有两个结果: 找到目标元素,或未找到。

假设元素排列无序,则目标元素在每一个位置出现的可能都相同。

确定目标元素是否在列表中,唯一的方法就是将它与列表中的每个元素都比较一次

列表中有n个元素,那么顺序搜索经过 n 次比较后才能确定目标元素不在列表中。如果列表含目标元素,分析起来更复杂。实际上有 3 种可能的情况:

最好情况目标元素位于列表的第一个位置,则只需比较一次;

最坏情况目标元素位于最后一个位置,则需要比较 n次

平均情况目标元素位于中间位置,则需要比较 n / 2次。 --> 当n增大,系数则可省略,所以顺序搜索时间复杂度O(n)


有序列表

有序列表的顺序搜索过程

通过观察上图有序列表列表中的顺序搜索过程我们可以得出以下结论:

元素按升序排列

如果存在目标元素,那么它出现在 n个位置中任意一个位置的可能性仍然一样大,因此比较次数与在无序列表相同

But,如果不存在目标元素,那么搜索效率就会提高。---> 因为当找到比目标元素大的数的时候程序就会停止搜索

无序表的顺序搜索代码实现

#有序表的顺序搜索
def ordered_sequential_search(a_list,item):
    pos = 0
    while pos < len(a_list):
        if a_list[pos] == item:
            return True
        elif a_list[pos] > item:
            return False
        pos += 1
    return False
print(ordered_sequential_search([1,2,4,5,9],6))

下表总结了,在有序表中搜索时的比较次数。

最好情况:只需比较1次。  平均情况比较 n / 2 次,但时间复杂度仍是O(n)。

总结:只有当列表不存在目标元素时,有序排列的元素,才能提高顺序搜索的效率

📝总结:

本篇文章介绍了搜索算法以及,有序列表在搜索算法中 的优势,前提条件是:只有当元素不在列表中时有序排列的元素,才能提高顺序搜索的效率

目录
相关文章
|
14天前
|
Python
二分查找变种大赏!Python 中那些让你效率翻倍的搜索绝技!
二分查找是一种高效的搜索算法,适用于有序数组。其基本原理是通过不断比较中间元素来缩小搜索范围,从而快速找到目标值。常见的变种包括查找第一个等于目标值的元素、最后一个等于目标值的元素、第一个大于等于目标值的元素等。这些变种在实际应用中能够显著提高搜索效率,适用于各种复杂场景。
34 9
|
15天前
|
算法 数据处理 开发者
超越传统:Python二分查找的变种策略,让搜索效率再上新台阶!
本文介绍了二分查找及其几种Python实现的变种策略,包括经典二分查找、查找第一个等于给定值的元素、查找最后一个等于给定值的元素以及旋转有序数组的搜索。通过调整搜索条件和边界处理,这些变种策略能够适应更复杂的搜索场景,提升搜索效率和应用灵活性。
28 5
|
10天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
41 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
10天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
37 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
10天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
50 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
15天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
32 2
|
18天前
|
算法 搜索推荐 数据库
二分搜索:高效的查找算法
【10月更文挑战第29天】通过对二分搜索的深入研究和应用,我们可以不断挖掘其潜力,为各种复杂问题提供高效的解决方案。相信在未来的科技发展中,二分搜索将继续发挥着重要的作用,为我们的生活和工作带来更多的便利和创新。
28 1
|
24天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
26 3
|
27天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
下一篇
无影云桌面