基于Python+Flask+Echart实现二手车数据分析展示

简介: 基于Python+Flask+Echart实现二手车数据分析展示

项目编号:BS-Python-010

一,环境介绍

语言环境:Python3.8+Flask

开发工具:IDEA或PyCharm

二,项目简介

二手市场数据分析是指对二手市场中的交易数据进行整理、分析和解读,以从中获取有用的信息并作出决策。以下是可能的分析方向:

1. 商品价格分析:通过对不同商品在市场上的价格进行分析,了解到商品的市场价值、价格波动趋势等信息,以便于制定购买或销售策略。

2. 商品销售量分析:通过对不同商品在市场上的销售量进行分析,了解到商品的受欢迎程度、销售趋势等信息,以便于制定采购或促销策略。

3. 购买者分析:通过对购买者的性别、年龄、地域等信息进行分析,了解到不同消费群体的消费习惯、消费偏好等信息,以便于制定精准的市场推广策略。

4. 品牌分析:通过对不同品牌的销售量、市场份额等信息进行分析,了解到不同品牌在市场上的竞争力和发展趋势,以便于制定品牌推广策略。

5. 交易行为分析:通过对交易行为的数据进行分析,了解到不同时间段、不同地域、不同商品的交易状况,以便于制定更加合理的交易策略。

6. 竞争分析:通过对同类产品的竞争情况进行分析,了解到不同品牌、不同价格的竞争对手,以便于制定更加有效的市场竞争策略。

本项目基于Python+Echart实现二手车市场数据分析和大屏展示,通过采集到的二手车相关数据,读取采集的数据文件,进行数据分析和展示。采用Flask  Web框架开发实现动态WEB页面数据加载和展示。

三,系统展示

大屏数据展示分析

分模块介绍实现:

城市前十功能

对应代码:

#汽车品牌
import pandas as pd
df=pd.read_csv("二手车基本信息.csv")
df_title = df.apply(lambda x:x['标题'].split(' ')[0], axis=1)
title_list = df_title.value_counts().index.tolist()[:10]
title_num = df_title.value_counts().tolist()[:10]
from pyecharts import options as opts
from pyecharts.charts import Bar
c = (
    Bar()
    .add_xaxis(title_list)
    .add_yaxis("汽车品牌", title_num)
    .set_colors(["cyan","gray"])
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title="汽车品牌数量前十"),
    )
    .render("bigdata/cardata/汽车品牌前十.html")
)

城市分布

实现代码:

#城市前十
import pandas as pd
df=pd.read_csv("二手车基本信息.csv")
city_num = df['城市'].value_counts().tolist()[:10]
city_type = df['城市'].value_counts().index.tolist()[:10]
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
c = (
    Pie()
    .add("", [list(z) for z in zip(city_type, city_num)])
    .set_colors(["blue", "green", "yellow", "red", "pink", "orange", "purple","black","cyan","gray"])
    .set_global_opts(title_opts=opts.TitleOpts(title="城市前十"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("bigdata/cardata/城市前十.html")
)

年份分布

代码实现:

#年份分布
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
df=pd.read_csv("二手车基本信息.csv")
df.head()
df['年份'].value_counts().values.tolist()
year_num =df['年份'].value_counts().values.tolist()
year_type=df['年份'].value_counts().index.tolist()
c = (
    Pie()
    .add("", [list(z) for z in zip(year_type, year_num)])
    .set_global_opts(title_opts=opts.TitleOpts(title="年份分布"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("bigdata/cardata/年份分布.html")
)

购买渠道及价格

代码实现:

#车辆价格
import pandas as pd
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
df=pd.read_csv("二手车基本信息.csv")
def price(x):
    if x<=5.0:
        return '五万元以下'
    elif 5.0<x<=10.0:
        return '5-10万'
    elif 10.0<x<=15.0:
        return '10-15万'
    elif 15.0<x<=20.0:
        return '15-20万'
    elif 20.0<x<=30.0:
        return '20-30万'
    else:
        return '30万以上'
df['价格分级']=df['价格(万元)'].apply(lambda x:price(x))
price_num =df['价格分级'].value_counts().tolist()
price_list=df['价格分级'].value_counts().index.tolist()
# print(price_num)
c = (
    Line()
    .add_xaxis(price_list)
    .add_yaxis("价格", price_num)
    .set_global_opts(title_opts=opts.TitleOpts(title="车辆价格"))
    .render("bigdata/cardata/车辆价格.html")
)

二手车保修及里程

代码实现

#保修占比
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Liquid
df=pd.read_csv("二手车基本信息.csv")
df["是否保修"].fillna("无保修",inplace=True)
per=df['是否保修'].value_counts()['无保修']/len(df)
c = (
    Liquid()
        .add("lq", [1 - per])
        .set_global_opts(title_opts=opts.TitleOpts(title="保修占比"))
        .render("bigdata/cardata/保修占比.html")
)

四,相关作品展示

基于Java开发、Python开发、PHP开发、C#开发等相关语言开发的实战项目

基于Nodejs、Vue等前端技术开发的前端实战项目

基于微信小程序和安卓APP应用开发的相关作品

基于51单片机等嵌入式物联网开发应用

基于各类算法实现的AI智能应用

基于大数据实现的各类数据管理和推荐系统


相关文章
|
1月前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
198 4
数据分析的 10 个最佳 Python 库
|
3月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
3月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
146 5
|
3月前
|
JSON 前端开发 API
使用Python和Flask构建简易Web API
使用Python和Flask构建简易Web API
175 3
|
3月前
|
存储 API 数据库
使用Python和Flask构建简单的RESTful API
使用Python和Flask构建简单的RESTful API
|
3月前
|
JSON 关系型数据库 测试技术
使用Python和Flask构建RESTful API服务
使用Python和Flask构建RESTful API服务
148 2
|
3月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
3月前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。

热门文章

最新文章

推荐镜像

更多