期待已久!阿里云容器服务 ACK AI 助手正式上线

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 期待已久!阿里云容器服务 ACK AI 助手正式上线

作者:行疾


大模型技术的蓬勃发展持续引领 AI 出圈潮流,各行各业都在尝试采用 AI 工具实现智能增效。


2023 年云栖大会上,阿里云容器服务团队正式发布 ACK AI 助手,带来大模型增强智能诊断,帮助企业和开发者降低 K8s 的运维复杂度。这款国内首家云原生容器场景的原生 AI 产品 —— ACK AI 助手 beta 版现已全面上线,功能欢迎大家试用。


Kubernetes 好似一台复杂的飞机发动机


Kubernetes复杂概念、运维体系犹如一台复杂的飞机发动机


“Kubernetes 是我在技术生涯中遇到的最令人沮丧、最痛苦、但却最美妙的东西。” “Kubernetes 是一个复杂的软件,有许多可动组件和极高的可扩展性。正如你能用 Kubernetes 做很多事情一样,完成这些事情的方法也有很多种。如果你给某人一个Kubernetes 集群,却不告诉他们确切的操作方法,他们会找到你没有准备好的方法。他们会发现不同的工具,很快你们之间就会有分歧。”


这是两位 Kubernetes 用户的心声,Dimensional Research 和 Spectro Cloud 的一次联合调研报告发现,Kubernetes 为架构带来了一种独特的高复杂度,但也恰恰因此,Kubernetes才能为用户带来最为欣赏的灵活性。


CNCF 调研报告同样显示,Kubernetes 的使用者反馈使用容器服务的最大障碍和挑战是面对复杂的概念和运维体系的巨大学习成本。


参考:https://www.cncf.io/reports/cncf-annual-survey-2022/


Kubernetes 的运维体系的复杂,还体现在冗长的异常排查链路。可以看到下图为一次典型的 Kubernetes 上应用的异常恢复运维过程。


一次典型的容器场景故障恢复的完整过程


故障恢复的全过程需要至少经过如下三个环节,才能最终闭环问题。


1. 使用可观测性发现异常 (Observability)

2. 运维止血 (Ops)

3. 问题根因定位


每一个环节都需要有 Kubernetes 观测、运维经验的人员参与,才能缩短整个问题发现的流程。

当完成整个链路的排查,最终修复问题,可能需要数小时的时长,造成业务影响,甚至最终造成资损。


容器服务 ACK 团队正在探索,通过新一代的基于 AI 智能的可观测 & AIOps 能力,如何大幅缩短平均恢复时间 (Mean Time To Recovery)。


AI 能力的跨时代飞跃从“人工+自能”到人工智能


今日大语言模型 (LLM) 展现出惊人的推理、学习能力,AI 的成熟度也发生了具体大飞跃。


以 ChatGPT 与 Warfare 为例的 AI 能力对比


如上图以 ChatGPT 与 Warfare 为例的 AI 能力对比,我们可以简单判断 AI 是否在成熟度上能对我们有一定的帮助 (Good/Evil):


大致 AI 的成熟度可体现在以下三个方面:


1. 可重复性 - AI 的推理和学习能力已经成熟到能帮助人胜任一些可重复的事务,并提供自动化。

2. 复杂度 - AI 能帮助我们完成一些复杂逻辑的推理。

3. 无人值守 - AI 能在没有或较少人为干涉的情况下进行工作。


所以当前随着 AI 能力的飞跃,我们可以通过 AI 能力提供下一代 AI-Powered Observability&AIOps 能力。


参考:https://www.cncf.io/blog/2023/09/05/ai-for-kubernetes-good-or-evil/


ACK AI 助手为 K8s 提供 AI 增强的 AIOps


ACK AI 助手已经上线智能快速诊断、智能问答两大能力

基于 ACK 可观测体系的监控数据,并结合容器服务 ACK 团队专业的 Kubernetes 经验沉淀,通过大模型 (LLM) 的分析推理能力进行问题的根因定位,提供更智能的 Kubernetes 产品使用体验。



目前提供主要的功能场景:


  • 智能快速诊断
  • 通过和 ACK 上观测体系的结合,自动快速获取异常信息状态。
  • 结合 ACK 团队专业的 Kubernetes 经验沉淀,提供容器场景的专家知识,进行异常诊断智能判断。
  • 结合大模型 (LLM) 的推理能力,对综合监控信息进行根因定位。
  • 自动串联从问题观测发现、问题根因诊断、AIOps 的异常问题处理,与 ACK 专家诊断系统结合,闭环运维流程。
  • 智能问答
  • 结合 ACK 团队专业的 Kubernetes 经验沉淀,提供容器场景的专家知识问答。
  • 结合大模型 (LLM) 的推理能力,对综合监控信息进行整合。


AIOps 的基础来自于 ACK 可观测体系的结合


示例一个异常 Deployment 的异常诊断拓扑结构


ACK AI 助手在快速故障诊断的场景下,能通过 ACK 上的可观测体系自动获取 ACK 集群上的异常监控状态信息的同时,也能根据 Kubernetes 的部署结构,智能感知下钻寻找根因。


如上图示例,用户看到某 Deployment 发生异常,实际的观测诊断信息需要结合 Kubernetes 的拓扑结构,下钻诊断 Deployment 下的某个异常 Pod,且可能还需要结合该异常 Pod 的事件,判断是否下钻诊断该异常 Pod 所在的节点 Node 等,最终下钻找到根因。最终诊断信息为一个拓扑树形结构。


由多年专家经验训练而得的 LLM

ACK AI 助手也融入了阿里云容器服务 ACK 团队沉淀的 Kubernetes 的异常诊断、故障恢复的经验。


如下是在 ACK 中一个 Pod 异常的专家系统故障诊断流程示例:


示例一个 Pod 异常的专家系统故障诊断流程


ACK AI 助手在实际故障诊断的过程中,会把故障诊断大体上拆分成几个阶段:


1. ACK AI 助手会根据可观测信息、拆分下钻问题并获取更多信息,从而浅析故障原因。

2. ACK AI 助手会把浅析的结论,结合 ACK 已有的专业故障诊断系统(专家系统)的经验沉淀,得到更准确的诊断结论。


参考:https://help.aliyun.com/zh/ack/ack-managed-and-ack-dedicated/user-guide/pod-troubleshooting-1


典型使用场景一:智能快速诊断



如上图所示,是一个典型的 Pod 因为 Node Affinity(节点亲和性)配置,导致 Pod 无法被调度的场景。


ACK AI 助手可以通过在 ACK 控制台对应 Deployment/Pod 页面的异常状态附近找到“智能诊断”按钮,直接唤醒并发起 ACK AI 助手的快速诊断。


可以看到 ACK AI 助手会贴心的解释此异常的原因,以及给出修复建议。


如果 Deployment 的异常还是无法最终定位,ACK AI 助手也会在底部给出接下来您还可以直接对异常的 Pod 发起专家系统的故障诊断,从而给出更进一步的排查诊断结果。


目前 ACK AI 助手提供了 Deployment、Pod、Event、Node 的主要 Kubernetes 实体的智能诊断功能,您可以在发生异常时在 ACK 控制台对应页面找到“智能诊断”按钮。


典型使用场景二:智能问答



如上图所示,ACK AI 助手的智能问答功能,可以在 ACK 控制台右下角的 icon 图标唤醒。您可以随时向他提问,咨询关于 Kubernetes 和 ACK 产品的相关问题。


帮助您快速了解容器领域的专家知识,有效降低用户的学习成本。


如何开启 ACK AI 助手?

ACK AI 助手的智能问答功能,可以在 ACK 控制台右下角的 icon 图标唤醒。


ACK AI 助手可以通过在 ACK 控制台对应节点列表、Deployment、Pod、Pod 事件页面的异常状态附近找到“智能诊断”按钮,直接唤醒并发起 ACK AI 助手的快速诊断。


ACK AI 助手,自阿里云容器服务团队在 2023 年云栖大会上宣发以来,作为国内首家推出云原生容器场景的原生 AI 产品功能,目前已发布 beta 版并全面对客户开放,欢迎各位用户开始试用。


我们诚邀您点击此处,登录容器服务 ACK 控制台体验 ACK AI 助手能力,并加入钉钉群交流反馈您的使用体验。(钉钉群号:70080006301

相关实践学习
通过容器镜像仓库与容器服务快速部署spring-hello应用
本教程主要讲述如何将本地Java代码程序上传并在云端以容器化的构建、传输和运行。
Kubernetes极速入门
Kubernetes(K8S)是Google在2014年发布的一个开源项目,用于自动化容器化应用程序的部署、扩展和管理。Kubernetes通常结合docker容器工作,并且整合多个运行着docker容器的主机集群。 本课程从Kubernetes的简介、功能、架构,集群的概念、工具及部署等各个方面进行了详细的讲解及展示,通过对本课程的学习,可以对Kubernetes有一个较为全面的认识,并初步掌握Kubernetes相关的安装部署及使用技巧。本课程由黑马程序员提供。   相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
2天前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
1天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
|
1天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
3天前
|
存储 人工智能 弹性计算
对话阿里云吴结生:AI时代,云上高性能计算的创新发展
在阿里云智能集团副总裁,弹性计算产品线负责人、存储产品线负责人 吴结生看来,如今已经有很多行业应用了高性能计算,且高性能计算的负载正呈现出多样化发展的趋势,“当下,很多基础模型的预训练、自动驾驶、生命科学,以及工业制造、半导体芯片等行业和领域都应用了高性能计算。”吴结生指出。
|
1天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
20 2
|
1天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
3天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
34 8
|
1天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
86 59
|
2天前
|
人工智能 前端开发 Java
基于开源框架Spring AI Alibaba快速构建Java应用
本文旨在帮助开发者快速掌握并应用 Spring AI Alibaba,提升基于 Java 的大模型应用开发效率和安全性。
基于开源框架Spring AI Alibaba快速构建Java应用
|
1天前
|
人工智能 运维 NoSQL
云栖大会|多模+一体化,构建更高效的AI应用
在2024年云栖大会「NoSQL数据库」专场,多位知名企业和阿里云瑶池数据库团队的技术专家,共同分享了阿里云Lindorm、Tair、MongoDB和MyBase的最新进展与实践。Tair推出Serverless KV服务,解决性能瓶颈和运维难题;Lindorm助力AI和具身智能时代的多模数据处理;MongoDB云原生化提升开发效率;MyBase One打破云边界,提供云边端一体化服务。这些技术进展和最佳实践,展示了阿里云在NoSQL数据库领域的创新能力和广泛应用前景。

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多