数据结构之栈和队列

简介: 数据结构之栈和队列



一、栈的相关概念及结构

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则(后进先出)。

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。

出栈:栈的删除操作叫做出栈。出数据也在栈顶。

在我们的实际应用中,栈这种后进先出的数据结构的应用是非常普遍的。比如你在使用浏览器时,浏览器都有一个后退键,你单击后可以按访问顺序的逆序加载浏览过的网页,再比如Word等文档或图像编辑软件,都有撤销的操作键。还有个例子就是在游戏中,你打开背包界面,然后打开武器的具体介绍界面,关闭时你需要先关闭介绍界面,才能关闭背包界面。上面举出的例子都是用栈来实现的。


二、栈的实现

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。如下图:

这里我们使用数组来实现这个栈。代码如下:

* 首先我们先定义一个栈

typedef int Datatype;
typedef struct Stack
{
  Datatype* a;//一个柔性数组
  int top;//指向栈顶元素的下一个
  int size;//容量(满了就要扩容)
}SK;

* 栈的相关接口函数:

//初始化
void StackInit(SK* ps)
{
  assert(ps);
  ps->top = 0;//每次指向栈顶的下一个
  Datatype* newnode = (Datatype*)malloc(sizeof(Datatype) * 4);
  if (newnode == NULL)
  {
    printf("malloc fail");
    exit(-1);
  }
  else
  {
    ps->a = newnode;
  }
  ps->size = 4;
}
//销毁
void StackDestory(SK* ps)
{
  assert(ps);
  free(ps->a);
  ps->a = NULL;
  ps->top = 0;
  ps->size = 0;
}
//入栈
void StackPush(SK* ps, Datatype x)
{
  assert(ps);
  //满了就扩容
  if (ps->top == ps->size)
  {
    Datatype* newnode = (Datatype*)realloc(ps->a, ps->size * 2 * sizeof(Datatype));
    if (newnode == NULL)
    {
      printf("realloc fail");
      exit(-1);
    }
    else
    {
      ps->a = newnode;
      ps->size *= 2;
    }
  }
  ps->a[ps->top] = x;
  ps->top++;
}
//出栈
void StackPop(SK* ps)
{
  assert(ps);
  //如果栈空了还去调用Pop就直接报错
  assert(ps->top > 0);
  ps->top--;
}
//取栈顶元素
Datatype StackTop(SK* ps)
{
  assert(ps);
  //如果栈空了还去调用Top就直接报错
  assert(ps->top > 0);
  return ps->a[ps->top - 1];
}
//求数据个数
Datatype StackNum(SK* ps)
{
  return ps->top;
}
//判空
bool StackEmpty(SK* ps)
{
  assert(ps);
  return ps->top == 0;
}

三、队列的概念及结构

队列在实际生活的应用中也是非常广泛的。比如说医院的门诊排队系统,如果你是先扫码进行排队,那么你必定是先被叫到去问诊的。这就符合队列这种先进先出的特点。

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出,FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾。出队列:进行删除操作的一端称为队头。

队列的数据元素又称为队列元素。在队列中插入一个队列元素称为入队,从队列中删除一个队列元素称为出队。因为队列只允许在一端插入,在另一端删除,所以只有最早进入队列的元素才能最先从队列中删除。 如下图:


四、队列的实现

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数组头上出数据,效率会比较低。所以我们下面使用链表来实现队列。

typedef int Datatype;
typedef struct QueueNode
{
  struct QueueNode* next;
  Datatype data;
}QNode;
typedef struct Queue
{
  QNode* head;
  QNode* tail;
}Queue;
//初始化
void QueueInit(Queue* pq)
{
  assert(pq);
  pq->head = pq->tail = NULL;
}
//销毁
void QueueDestory(Queue* pq)
{
  assert(pq);
  QNode* cur = pq->head;
  while (cur)
  {
    QNode* next = cur->next;
    free(cur);
    cur = next;
  }
  pq->head = pq->tail = NULL;
}
//队尾入队列
void QueuePush(Queue* pq, Datatype x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
    printf("malloc is fail\n");
    exit(-1);
  }
    newnode->data = x;
    newnode->next = NULL;
  if (pq->tail == NULL)
  {
    pq->head = pq->tail = newnode;
  }
  else
  {
    pq->tail->next = newnode;
    pq->tail = newnode;
  }
}
//队头出队列
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(pq->head);
  QNode* cur = pq->head->next;
  if (cur == NULL)
  {
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    free(pq->head);
    pq->head = cur;
  }
}
//取队头的数据
Datatype QueueFront(Queue* pq)
{
  assert(pq);
  assert(pq->head);
  return pq->head->data;
}
//取队尾的数据
Datatype QueueBack(Queue* pq)
{
  assert(pq);
  assert(pq->head);
  return pq->tail->data;
}
//计算数据的个数
int Queuesize(Queue* pq)
{
  assert(pq);
  int size = 0;
  QNode* cur = pq->head;
  while (cur)
  {
    cur = cur->next;
    size++;
  }
  return size;
}
//判空
bool QueueEmpty(Queue* pq)
{
  assert(pq);
  return pq->head == NULL;
}

下面我们来测试一下上面的代码:

#include <stdio.h>
#include "Queue.h"
int main()
{
  Queue q;
  QueueInit(&q);
  QueuePush(&q, 1);
  QueuePush(&q, 2);
  QueuePush(&q, 3);
  printf("%d ", QueueFront(&q));
  QueuePop(&q);
  printf("%d ", QueueFront(&q));
  QueuePop(&q);
  printf("\n");
  QueuePush(&q, 4);
  QueuePush(&q, 4);
  QueuePush(&q, 4);
  printf("Size:%d\n", Queuesize(&q));
  while (!QueueEmpty(&q))
  {
    printf("%d ", QueueFront(&q));
    QueuePop(&q);
  }
  printf("\n");
  QueueDestory(&q);
  return 0;
}

运行结果如下:


五、总结

栈和队列独特的结构特性使其在实际应用中具有非常大的作用。栈和队列的引入去除了普通顺序表和链表的复杂细节,使人们使用起来更加方便。

现在的许多高级语言,比如C++, java等都有对栈结构和队列结构的封装,可以直接使用,不需要自己实现,大大提高了效率。

目录
相关文章
|
9天前
|
存储 Java 容器
深入浅出 栈和队列(附加循环队列、双端队列)
深入浅出 栈和队列(附加循环队列、双端队列)
|
3天前
|
存储 缓存 算法
【数据结构】栈和队列的模拟实现(两个方式实现)
【数据结构】栈和队列的模拟实现(两个方式实现)
|
2天前
|
存储 编译器 数据处理
栈溢出及解决方法
栈溢出及解决方法
3.栈和队列(汇总版)
3.栈和队列(汇总版)
|
7天前
|
算法 编译器 Python
栈的最后表演:逆波兰表达式求值
栈的最后表演:逆波兰表达式求值
|
10天前
<数据结构>栈和队列. 顺序表实现栈,单链表实现队列.
<数据结构>栈和队列. 顺序表实现栈,单链表实现队列
21 3
TU^
|
14天前
|
存储 调度 索引
数据结构~~栈和队列
在计算机科学中,数据结构是构建高效程序的基础。栈和队列是两种重要且常用的线性数据结构,它们在解决各种问题中发挥着关键作用。
TU^
27 1
|
10天前
|
存储 测试技术 计算机视觉
栈和队列经典练习题
栈和队列经典练习题
20 3