tensorflow的模型使用flask制作windows系统服务

简介: tensorflow的模型使用flask制作windows系统服务

搜罗到两种方案,经测试都可正常运行。这两种方案各有利弊,可根据实际需求选择。

  1. nssm的方案
    将tensorflow模型的推理逻辑制作成flask服务,假设文件为app.py。其中的model_predict需要换成用户自己的推理模块。
# app.py文件
from flask import Flask, request
import numpy as np
from tensorflow.python.saved_model import tag_constants
from tensorflow.contrib.tensor_forest.python import tensor_forest
from tensorflow.python.ops import resources
import tensorflow.compat.v1 as tf
import json
from gevent import pywsgi
import multiprocessing
from multiprocessing import freeze_support
from datetime import datetime
import platform
app = Flask(__name__)
class predict():
    def __init__(self, model_path):
        # with tf.Session() as self.sess:
        self.sess = tf.Session()
        meta_graph_def = tf.saved_model.loader.load(self.sess, [tag_constants.SERVING], model_path + '/001/')
        signature = meta_graph_def.signature_def
        self.x = signature['prediction'].inputs['input'].name
        self.result = signature['prediction'].outputs['output'].name
    def run(self, input_data):
        _input_data = []
        _input_data.append(input_data)
        y = self.sess.run(self.result, feed_dict={self.x: _input_data})
        return y
@app.route('/')
def hello():
    return 'hello world'
@app.route('/predict', methods=['POST'])
def model_predict():
    input_json = request.get_json()
    method = input_json['method']
    input_data = input_json['data']
    if method != "inference":
        results = {'ret_code':101,'ret_message':'字段错误'}
        return json.dumps(results,ensure_ascii=False)
    input_arr = np.array(input_data)
    try:
        result = pred_infer.run(input_arr)[0]
        if (result[1] > 0.5):
            ret_status = 'good'
        else:
            ret_status = 'bad'
        ret_code = 100
        results = {'ret_code':ret_code,'ret_message':'处理成功','result':result.tolist(),'ret_status':ret_status}
    except:
        ret_code =  201
        results = {'ret_code':ret_code,'ret_message':'参数错误'}
    results_json = json.dumps(results,ensure_ascii=False)
    return results_json
#model_path = '.\\models\\healthy\\model_state'
model_path = 'D:\\YourModelPath\\models\\model_state'
pred_infer = predict(model_path)
def MyServer(host, port):
    server = pywsgi.WSGIServer((host, port), app)
    server.serve_forever()
if __name__ == '__main__':
    MyServer('0.0.0.0', 8088)
  1. 将python文件打包成exe文件。
D:\Python36\Scripts\pyinstaller.exe -F .\app.py #dist目录下生成app.exe
  1. 命令行测试app.exe能否正常运行,提供推理服务。
    下载nssm,使用nssm实现注册/开启/关闭/更新/移除服务。
nssm\win32\nssm.exe install  appServer  #注册服务,appServer是服务名
nssm\win32\nssm.exe start  appServer    #开启服务,appServer是服务名
  1. pywin32的方案
    将tensorflow模型的推理逻辑改写成flask服务,假设文件为app.py(推理模块)和server.py(服务模块)。
# app.py文件
from flask import Flask, request
import numpy as np
from tensorflow.python.saved_model import tag_constants
from tensorflow.contrib.tensor_forest.python import tensor_forest
from tensorflow.python.ops import resources
import tensorflow.compat.v1 as tf
import json
from gevent import pywsgi
import multiprocessing
from multiprocessing import freeze_support
from datetime import datetime
import platform
app = Flask(__name__)
class predict():
    def __init__(self, model_path):
        # with tf.Session() as self.sess:
        self.sess = tf.Session()
        meta_graph_def = tf.saved_model.loader.load(self.sess, [tag_constants.SERVING], model_path + '/001/')
        signature = meta_graph_def.signature_def
        self.x = signature['prediction'].inputs['input'].name
        self.result = signature['prediction'].outputs['output'].name
    def run(self, input_data):
        _input_data = []
        _input_data.append(input_data)
        y = self.sess.run(self.result, feed_dict={self.x: _input_data})
        return y
@app.route('/')
def hello():
    return 'hello world'
@app.route('/predict', methods=['POST'])
def model_predict():
    input_json = request.get_json()
    method = input_json['method']
    input_data = input_json['data']
    if method != "inference":
        results = {'ret_code':101,'ret_message':'字段错误'}
        return json.dumps(results,ensure_ascii=False)
    input_arr = np.array(input_data)
    try:
        result = pred_infer.run(input_arr)[0]
        if (result[1] > 0.5):
            ret_status = 'good'
        else:
            ret_status = 'bad'
        ret_code = 100
        results = {'ret_code':ret_code,'ret_message':'处理成功','result':result.tolist(),'ret_status':ret_status}
    except:
        ret_code =  201
        results = {'ret_code':ret_code,'ret_message':'参数错误'}
    results_json = json.dumps(results,ensure_ascii=False)
    return results_json
#model_path = '.\\models\\healthy\\model_state'
model_path = 'D:\\YourModelPath\\models\\model_state'
pred_infer = predict(model_path)
  1. 就是把WSGIServer调用的部分放到server.py中。拆分的原因很明显,解耦合,方便其他模型做服务时,只在app.py内改动。特别注意, 模型的路径需要用绝对路径,相对路径可以注册服务,但无法正常启动服务(闪退)。
# server.py文件
import win32serviceutil
from gevent.pywsgi import WSGIServer
from app import app
class Service(win32serviceutil.ServiceFramework):
    # 服务名
    _svc_name_ = "flask_gevent_service_test"
    # 显示服务名
    _svc_display_name_ = "flask gevent service test display name"
    # 描述
    _svc_description_ = "flask gevent service test description"
    def __init__(self, *args):
        super().__init__(*args)
        # host和ip绑定
        self.http_server = WSGIServer(('127.0.0.1', 8088), app)
        self.SvcStop = self.http_server.stop
        self.SvcDoRun = self.http_server.serve_forever
if __name__ == '__main__':
    win32serviceutil.HandleCommandLine(Service)
  1. 使用python自带的pythonServer实现注册/开启/关闭/更新/移除服务。
python server.py install  #注册服务
python server.py start    #开启服务
  1. 总结:在某些情况下无法使用nssm的方案,比如防火墙拦截等,这时可选择第二种方案。当然第二种方案的执行命令仍然需要python环境包,可以在此基础上将app.py和server.py两个文件打包成一个exe,方便移植。这部分操作读者可以参考第一种方案中的打包方法自行验证。
相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
167 55
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【大作业-04】手把手教你构建垃圾分类系统-基于tensorflow2.3
本文介绍了基于TensorFlow 2.3的垃圾分类系统,通过B站视频和博客详细讲解了系统的构建过程。系统使用了包含8万张图片、245个类别的数据集,训练了LeNet和MobileNet两个卷积神经网络模型,并通过PyQt5构建了图形化界面,用户上传图片后,系统能识别垃圾的具体种类。此外,还提供了模型和数据集的下载链接,方便读者复现实验。垃圾分类对于提高资源利用率、减少环境污染具有重要意义。
100 0
【大作业-04】手把手教你构建垃圾分类系统-基于tensorflow2.3
|
2月前
|
安全 Windows
永久关闭 Windows 11 系统更新
永久关闭 Windows 11 系统更新
160 0
|
23天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
129 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
安全 Windows
【Azure Cloud Service】在Windows系统中抓取网络包 ( 不需要另外安全抓包工具)
通常,在生产环境中,为了保证系统环境的安全和纯粹,是不建议安装其它软件或排查工具(如果可以安装,也是需要走审批流程)。 本文将介绍一种,不用安装Wireshark / tcpdump 等工具,使用Windows系统自带的 netsh trace 命令来获取网络包的步骤
72 32
|
1月前
|
存储 负载均衡 Java
如何配置Windows主机MPIO多路径访问存储系统
Windows主机多路径(MPIO)是一种技术,用于在客户端计算机上配置多个路径到存储设备,以提高数据访问的可靠性和性能。本文以Windows2012 R2版本为例介绍如何在客户端主机和存储系统配置多路径访问。
106 13
如何配置Windows主机MPIO多路径访问存储系统
|
1月前
|
网络安全 Windows
Windows server 2012R2系统安装远程桌面服务后无法多用户同时登录是什么原因?
【11月更文挑战第15天】本文介绍了在Windows Server 2012 R2中遇到的多用户无法同时登录远程桌面的问题及其解决方法,包括许可模式限制、组策略配置问题、远程桌面服务配置错误以及网络和防火墙问题四个方面的原因分析及对应的解决方案。
|
1月前
|
JSON 关系型数据库 测试技术
使用Python和Flask构建RESTful API服务
使用Python和Flask构建RESTful API服务
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
84 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
95 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型