分布式事物【什么是分布式事务、 分区容错性、一致性、可用性、】(三)-全面详解(学习总结---从入门到深化)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 分布式事物【什么是分布式事务、 分区容错性、一致性、可用性、】(三)-全面详解(学习总结---从入门到深化)

MySQL事务的实现原理_什么是undo log



undo log的概念


undo log是mysql中比较重要的事务日志之一,顾名思义,undo log是一种用于撤销回退的日志,在事务没提交之前,MySQL会先 记录更新前的数据到 undo log日志文件里面,当事务回滚时或者数据库崩溃时,可以利用 undo log来进行回退。


undo log的作用


在MySQL中,undo log日志的作用主要有两个:


1、提供回滚操作

---修改之前name = 张三
update user set name = "李四" where id = 1;  
----此时undo log会记录一条相反的update语句,如下:
update user set name = "张三" where id = 1;


注意: 如果这个修改出现异常,可以使用undo log日志来实现回滚操作,以保证事务的一致性。


2、提供多版本控制(MVCC)


MVCC,即多版本控制。在MySQL数据库InnoDB存储引擎中,用 undo Log来实现多版本并发控制(MVCC)。当读取的某一行被其他事务锁定时,它可以从undo log中分析出该行记录以前的数据版本是怎样的,从而让用户能够读取到当前事务操作之前的数据【快照读】。


快照读:

SQL读取的数据是快照版本【可见版本】,也就是历史版本,不用加锁,普通的SELECT就是快照读。


当前读:

SQL读取的数据是最新版本。通过锁机制来保证读取的数据无法 通过其他事务进行修改UPDATE、DELETE、INSERT、SELECT … LOCK IN SHARE MODE、SELECT … FOR UPDATE都是当前 读。


undo log的存储机制


undo log的存储由InnoDB存储引擎实现,数据保存在InnoDB的数据文件中。在InnoDB存储引擎中,undo log是采用分段(segment) 的方式进行存储的。


undo log的工作原理


在更新数据之前,MySQL会提前生成undo log日志,当事务提交的时候,并不会立即删除undo log,因为后面可能需要进行回滚操 作,要执行回滚(rollback)操作时,从缓存中读取数据。undo log日志的删除是通过通过后台purge线程进行回收处理的。


总结


undo log是用来回滚数据的用于保障未提交事务的原子性。


分布式事物处理_认识分布式事物



前言


随着互联网的快速发展,软件系统由原来的单体应用转变为分布式 应用,下图描述了单体应用向微服务的演变。


注意:


分布式系统会把一个应用系统拆分为可独立部署的多个服务, 因此需要服务与服务之间远程协作才能完成事务操作,这种分 布式系统环境下由不同的服务之间通过网络远程协作完成事务 称之为分布式事务,例如用户注册送积分事务、创建订单减库存事务,银行转账事务等都是分布式事务。


假如没有分布式事务



解释:


上图中包含了库存和订单两个独立的微服务,每个微服务维护了自己的数据库。在交易系统的业务逻辑中,一个商品在下单 之前需要先调用库存服务,进行扣除库存,再调用订单服务, 创建订单记录。


正常情况下,两个数据库各自更新成功,两边数据维持着一致性。


但是,在非正常情况下,有可能库存的扣减完成了,随后的订单记 录却因为某些原因插入失败。这个时候,两边数据就失去了应有的一致性。


问题: 这种时候需要要保证数据的一致性,单数据源的一致性靠单机 事物来保证,多数据源的一致性就要靠分布式事物保证。


什么是分布式事务


指一次大的操作由不同的小操作组成的,这些小的操作分布在不同 的服务器上,分布式事务需要保证这些小操作要么全部成功,要么全部失败。从本质上来说,分布式事务就是为了保证不同数据库的数据一致性。


分布式架构的理论知识_CAP理论



前言


分布式系统正变得越来越重要,大型网站几乎都是分布式的。分布式系统的最大难点,就是各个节点的状态如何同步。CAP 定理是这方面的基本定理,也是理解分布式系统的起点。


1998年,加州大学的计算机科学家Eric Brewer 提出,分布式系统有三个指标。


它们的第一个字母分别是 C、A、P。这三个指标不可能同时做到。 这个结论就叫做CAP 定理。


分区容错性


大多数分布式系统都分布在多个子网络。每个子网络就叫做一个 区。分区容错的意思是,区间通信可能失败。比如,一台服务器放 在中国,另一台服务器放在美国,这就是两个区,它们之间可能无法通信。


结论:

分区容错无法避免,因此可以认为 CAP 的 P 总是成立。CAP 定理告诉我们,剩下的 C 和 A 无法同时做到。


一致性


Consistency 中文叫做"一致性"。意思是,写操作之后的读操作,必须返回该值。举例来说,某条记录是 v0,用户向 G1 发起一个写操 作,将其改为 v1。


接下来,用户的读操作就会得到 v1。这就叫一致性。


问题是,用户有可能向 G2 发起读操作,由于 G2 的值没有发生变化,因此返回的是 v0。G1 和 G2 读操作的结果不一致,这就不满足一致性了。


为了让 G2 也能变为 v1,就要在 G1 写操作的时候,让 G1 向 G2 发 送一条消息,要求 G2 也改成 v1。


这样的话,用户向 G2 发起读操作,也能得到 v1。


可用性


只要收到用户的请求,服务器就必须给出回应。


一致性和可用性的矛盾



解释:


如果保证 G2 的一致性,那么 G1 必须在写操作时,锁定 G2 的 读操作和写操作。只有数据同步后,才能重新开放读写。锁定 期间,G2 不能读写,没有可用性。如果保证 G2 的可用性,那么势必不能锁定 G2,所以一致性不成立。


一致性和可用性如何选择



分布式事物处理_分布式事务产生的场景



跨JVM进程


当我们将单体项目拆分为分布式、微服务项目之后,各个服务之间通过远程REST或者RPC调用来协同完成业务操作。


典型的场景:

商城系统中的订单微服务和库存微服务,用户在下单时会访问 订单微服务,订单微服务在生成订单记录时,会调用库存微服务来扣减库存。各个微服务是部署在不同的JVM进程中的,此时,就会产生因跨JVM进程而导致的分布式事务问题。


跨数据库实例


单体系统访问多个数据库实例,也就是跨数据源访问时会产生分布式事务。


典型的场景:


例如,我们的系统中的订单数据库和交易数据库是放在不同的 数据库实例中,当用户发起退款时,会同时操作用户的订单数 据库和交易数据库,在交易数据库中执行退款操作,在订单数 据库中将订单的状态变更为已退款。由于数据分布在不同的数 据库实例,需要通过不同的数据库连接会话来操作数据库中的 数据,此时,就产生了分布式事务。


多个服务数据库


多个微服务访问同一个数据库。


分布式事物解决方案_强一致性分布式事务之2PC模型



两阶段提交又称2PC,2PC是一个非常经典的强一致、中心化的原子提交协议。这里所说的中心化是指协议中有两类节点:一个是中心化 协调者节点 和 N个参与者节点 。


生活中的2PC


A组织B、C和D三个人去爬山:如果所有人都同意去爬山,那么活动将举行;如果有一人不同意去爬山,那么活动将取消。


首先A将成为该活动的协调者,B、C和D将成为该活动的参与者。


具体流程:


阶段1:   

  ①A发邮件给B、C和D,提出下周三去爬山,问是否同意。 那么此时A需要等待B、C和D的邮件。

 ②B、C和D分别查看自己的日程安排表。B、C发现自己在 当日没有活动安排,则发邮件告诉A它们同意下周三去爬山。由 于某种原因, D白天没有查看邮 件。那么此时A、B和C均需要 等待。到晚上的时候,D发现了A的邮件,然后查看日程安排, 发现周三当天已经有别的安排,那么D回复A说活动取消吧。


阶段2:   

  ①此时A收到了所有活动参与者的邮件,并且A发现D下周 三不能去爬山。那么A将发邮件通知B、C和D,下周三爬山活动 取消。   

  ②此时B、C回复A“太可惜了”,D回复A“不好意思”。至此该 事务终止。


2PC阶段处理流程


举例订单服务A,需要调用支付服务B去支付,支付成功则处理购物 订单为待发货状态,否则就需要将购物订单处理为失败状态。


第一阶段:投票阶段

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
22天前
|
消息中间件 算法 调度
分布式系统学习10:分布式事务
本文是小卷关于分布式系统架构学习系列的第13篇,重点探讨了分布式事务的相关知识。随着业务增长,单体架构拆分为微服务后,传统的本地事务无法满足需求,因此需要引入分布式事务来保证数据一致性。文中详细介绍了分布式事务的必要性、实现方案及其优缺点,包括刚性事务(如2PC、3PC)和柔性事务(如TCC、Saga、本地消息表、MQ事务、最大努力通知)。同时,还介绍了Seata框架作为开源的分布式事务解决方案,提供了多种事务模式,简化了分布式事务的实现。
60 5
|
26天前
|
NoSQL 关系型数据库 MySQL
分布式系统学习9:分布式锁
本文介绍了分布式系统中分布式锁的概念、实现方式及其应用场景。分布式锁用于在多个独立的JVM进程间确保资源的互斥访问,具备互斥、高可用、可重入和超时机制等特点。文章详细讲解了三种常见的分布式锁实现方式:基于Redis、Zookeeper和关系型数据库(如MySQL)。其中,Redis适合高性能场景,推荐使用Redisson库;Zookeeper适用于对一致性要求较高的场景,建议基于Curator框架实现;而基于数据库的方式性能较低,实际开发中较少使用。此外,还探讨了乐观锁和悲观锁的区别及适用场景,并介绍了如何通过Lua脚本和Redis的`SET`命令实现原子操作,以及Redisson的自动续期机
98 7
|
2月前
|
存储 缓存 负载均衡
一致性哈希:解决分布式难题的神奇密钥
一致哈希是一种特殊的哈希算法,用于分布式系统中实现数据的高效、均衡分布。它通过将节点和数据映射到一个虚拟环上,确保在节点增减时只需重定位少量数据,从而提供良好的负载均衡、高扩展性和容错性。相比传统取模方法,一致性哈希能显著减少数据迁移成本,广泛应用于分布式缓存、存储、数据库及微服务架构中,有效提升系统的稳定性和性能。
184 1
|
4月前
|
消息中间件 缓存 算法
分布式系列第一弹:分布式一致性!
分布式系列第一弹:分布式一致性!
|
4月前
|
算法 Java 关系型数据库
漫谈分布式数据复制和一致性!
漫谈分布式数据复制和一致性!
|
1天前
|
NoSQL Java Redis
Springboot使用Redis实现分布式锁
通过这些步骤和示例,您可以系统地了解如何在Spring Boot中使用Redis实现分布式锁,并在实际项目中应用。希望这些内容对您的学习和工作有所帮助。
108 83
|
4月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
10天前
|
缓存 NoSQL 中间件
Redis,分布式缓存演化之路
本文介绍了基于Redis的分布式缓存演化,探讨了分布式锁和缓存一致性问题及其解决方案。首先分析了本地缓存和分布式缓存的区别与优劣,接着深入讲解了分布式远程缓存带来的并发、缓存失效(穿透、雪崩、击穿)等问题及应对策略。文章还详细描述了如何使用Redis实现分布式锁,确保高并发场景下的数据一致性和系统稳定性。最后,通过双写模式和失效模式讨论了缓存一致性问题,并提出了多种解决方案,如引入Canal中间件等。希望这些内容能为读者在设计分布式缓存系统时提供有价值的参考。感谢您的阅读!
Redis,分布式缓存演化之路
|
2月前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
210 5
|
3月前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
101 8