深入了解 Python MongoDB 操作:排序、删除、更新、结果限制全面解析

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
函数计算FC,每月15万CU 3个月
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 使用 sort() 方法对结果进行升序或降序排序。 sort() 方法接受一个参数用于“字段名”,一个参数用于“方向”(升序是默认方向)。

Python MongoDB 排序

对结果进行排序

使用 sort() 方法对结果进行升序或降序排序。 sort() 方法接受一个参数用于“字段名”,一个参数用于“方向”(升序是默认方向)。

示例

按名称按字母顺序对结果进行排序:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

mydoc = mycol.find().sort("name")

for x in mydoc:
  print(x)

Python MongoDB 删除文档

删除文档

要删除一个文档,我们使用 delete_one() 方法。 delete_one() 方法的第一个参数是一个查询对象,用于定义要删除的文档。注意:如果查询找到多个文档,仅删除第一个出现的文档。

示例

删除地址为“Mountain 21”的文档:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

myquery = {
    "address": "Mountain 21" }

mycol.delete_one(myquery)

删除多个文档

要删除多个文档,使用 delete_many() 方法。 delete_many() 方法的第一个参数是一个查询对象,用于定义要删除的文档。

示例

删除所有地址以字母S开头的文档:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

myquery = {
    "address": {
   "$regex": "^S"} }

x = mycol.delete_many(myquery)

print(x.deleted_count, " documents deleted.")

删除集合中的所有文档

要删除集合中的所有文档,请将一个空的查询对象传递给 delete_many() 方法:

示例

删除“customers”集合中的所有文档:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

x = mycol.delete_many({
   })

print(x.deleted_count, " documents deleted.")

Python MongoDB 删除集合

删除集合

您可以使用 drop() 方法删除表,或者在 MongoDB 中称为集合。

示例

删除“customers”集合:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

mycol.drop()

如果成功删除集合, drop() 方法将返回 true,如果集合不存在,则返回 false

Python MongoDB 更新

更新集合

您可以使用 update_one() 方法更新记录,或者在 MongoDB 中称为文档。 update_one() 方法的第一个参数是一个查询对象,用于定义要更新的文档。注意:如果查询找到多个记录,仅更新第一个出现的记录。第二个参数是一个对象,定义文档的新值。

示例

将地址从“Valley 345”更改为“Canyon 123”:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

myquery = {
    "address": "Valley 345" }
newvalues = {
    "$set": {
    "address": "Canyon 123" } }

mycol.update_one(myquery, newvalues)

# 更新后打印 "customers":
for x in mycol.find():
  print(x)

更新多个

要更新满足查询条件的所有文档,请使用 update_many() 方法。

示例

更新所有地址以字母“S”开头的文档:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

myquery = {
    "address": {
    "$regex": "^S" } }
newvalues = {
    "$set": {
    "name": "Minnie" } }

x = mycol.update_many(myquery, newvalues)

print(x.modified_count, "documents updated.")

Python MongoDB 限制结果

为了在 MongoDB 中限制结果,我们使用 limit() 方法。 limit() 方法接受一个参数,即定义要返回多少个文档的数字。

假设你有一个“customers”集合:

Customers
{
   '_id': 1, 'name': 'John', 'address': 'Highway 37'}
{
   '_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}
{
   '_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}
{
   '_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}
{
   '_id': 5, 'name': 'Michael', 'address': 'Valley 345'}
{
   '_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}
{
   '_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}
{
   '_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}
{
   '_id': 9, 'name': 'Susan', 'address': 'One way 98'}
{
   '_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}
{
   '_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}
{
   '_id': 12, 'name': 'William', 'address': 'Central st 954'}
{
   '_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}
{
   '_id': 14, 'name': 'Viola', 'address': 'Sideway 1633'}

示例

将结果限制为只返回5个文档:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

myresult = mycol.find().limit(5)

# 打印结果:
for x in myresult:
  print(x)

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取

最新文章推送

看完如果觉得有帮助,欢迎 点赞、收藏、关注

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
11天前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》图、查找、排序专题考点(含解析)
408考研——《数据结构》图,查找和排序专题考点选择题汇总(含解析)。
62 29
|
2天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
23 10
|
20天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
48 17
|
23天前
|
运维 Shell 数据库
Python执行Shell命令并获取结果:深入解析与实战
通过以上内容,开发者可以在实际项目中灵活应用Python执行Shell命令,实现各种自动化任务,提高开发和运维效率。
50 20
|
20天前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
29 10
|
1月前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
77 3
|
2月前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
165 5
|
2月前
|
存储 JSON NoSQL
学习 MongoDB:打开强大的数据库技术大门
MongoDB 是一个基于分布式文件存储的文档数据库,由 C++ 编写,旨在为 Web 应用提供可扩展的高性能数据存储解决方案。它与 MySQL 类似,但使用文档结构而非表结构。核心概念包括:数据库(Database)、集合(Collection)、文档(Document)和字段(Field)。MongoDB 使用 BSON 格式存储数据,支持多种数据类型,如字符串、整数、数组等,并通过二进制编码实现高效存储和传输。BSON 文档结构类似 JSON,但更紧凑,适合网络传输。
82 15
|
2月前
|
存储 NoSQL 关系型数据库
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
我们的风控系统引入阿里云数据库MongoDB版后,解决了特征类字段灵活加减的问题,大大提高了开发效率,极大的提升了业务用户体验,获得了非常好的效果
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
|
3月前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第21天】本文探讨了MongoDB Atlas的核心特性、实践应用及对云原生数据库未来的思考。MongoDB Atlas作为MongoDB的云原生版本,提供全球分布式、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了云原生数据库的未来趋势,如架构灵活性、智能化运维和混合云支持,并分享了实施MongoDB Atlas的最佳实践。