动态字符串SDS
SDS 简介
无论是 Redis 的 Key 还是 Value,其基础数据类型都是字符串。例如,Hash 型 Value 的field 与 value 的类型、List 型、Set 型、ZSet 型 Value 的元素的类型等都是字符串。虽然 Redis是使用标准 C 语言开发的,但并没有直接使用 C 语言中传统的字符串表示,而是自定义了一种字符串。这种字符串本身的结构比较简单,但功能却非常强大,称为简单动态字符串,Simple Dynamic String,简称 SDS。
注意,Redis 中的所有字符串并不都是 SDS,也会出现 C 字符串。C 字符串只会出现在字符串“字面常量”中,并且该字符串不可能发生变更。
SDS 结构
SDS 不同于 C 字符串。C 字符串本身是一个以双引号括起来,以空字符’\0’结尾的字符序列。但 SDS 是一个结构体,定义在 Redis 安装目录下的 src/sds.h 中:
struct sdshdr { // 字节数组,用于保存字符串 char buf[]; // buf[]中已使用字节数量,称为 SDS 的长度 int len; // buf[]中尚未使用的字节数量 int free; }
例如执行 SET country “China”命令时,键 country 与值”China”都是 SDS 类型的,只不过一个是 SDS 的变量,一个是 SDS 的字面常量。”China”在内存中的结构如下:
通过以上结构可以看出,SDS 的 buf 值实际是一个 C 字符串,包含空字符’\0’共占 6 个字节。但 SDS 的 len 是不包含空字符’\0’的。
该结构与前面不同的是,这里有 3 字节未使用空间。
SDS 的优势
C 字符串使用 Len+1 长度的字符数组来表示实际长度为 Len 的字符串,字符数组最后以空字符’\0’结尾,表示字符串结束。这种结构简单,但不能满足 Redis 对字符串功能性、安全性及高效性等的要求。
防止”字符串长度获取”性能瓶颈
对于 C 字符串,若要获取其长度,则必须要通过遍历整个字符串才可获取到的。对于超长字符串的遍历,会成为系统的性能瓶颈。
但,由于 SDS 结构体中直接就存放着字符串的长度数据,所以对于获取字符串长度需要消耗的系统性能,与字符串本身长度是无关的,不会成为 Redis 的性能瓶颈。
保障二进制安全
C 字符串中只能包含符合某种编码格式的字符,例如 ASCII、UTF-8 等,并且除了字符串末尾外,其它位置是不能包含空字符’\0’的,否则该字符串就会被程序误解为提前结束。而在图片、音频、视频、压缩文件、office 文件等二进制数据中以空字符’\0’作为分隔符的情况是很常见的。故而在 C 字符串中是不能保存像图片、音频、视频、压缩文件、office 文件等二进制数据的。
但 SDS 不是以空字符’\0’作为字符串结束标志的,其是通过 len 属性来判断字符串是否结束的。所以,对于程序处理 SDS 中的字符串数据,无需对数据做任何限制、过滤、假设,只需读取即可。数据写入的是什么,读到的就是什么。
减少内存再分配次数
SDS 采用了空间预分配策略与惰性空间释放策略来避免内存再分配问题。
空间预分配策略是指,每次 SDS 进行空间扩展时,程序不但为其分配所需的空间,还会为其分配额外的未使用空间,以减少内存再分配次数。而额外分配的未使用空间大小取决于空间扩展后 SDS 的 len 属性值。
- 如果 len 属性值小于 1M,那么分配的未使用空间 free 的大小与 len 属性值相同。
- 如果 len 属性值大于等于 1M ,那么分配的未使用空间 free 的大小固定是 1M。
SDS 对于空间释放采用的是惰性空间释放策略。该策略是指,SDS 字符串长度如果缩短,那么多出的未使用空间将暂时不释放,而是增加到 free 中。以使后期扩展 SDS 时减少内存再分配次数。
兼容 C 函数
Redis 中提供了很多的 SDS 的 API,以方便用户对 Redis 进行二次开发。为了能够兼容 C函数,SDS 的底层数组 buf[]中的字符串仍以空字符’\0’结尾。
现在要比较的双方,一个是 SDS,一个是 C 字符串,此时可以通过 C 语言函数strcmp(sds_str->buf,c_str)
新版本的SDS
SDS结构大致上可以分为2大部分:header部分和buff部分,并且header部分和buff部分在内存中是连续的。
header部分
header部分保存的是SDS一些源数据信息。
其中:
len
表示: 字符串的长度;alloc
表示:字符串的长度 + 额外预留空间的长度。alloc
代表可用来存储字符空间的总大小,但是不包括null-term
,所以是比实际分配出来的buff长度减1;
除了我们上面提到过的len和alloc,这里还多了一个flag字段。flag字段决定len和alloc的变量类型。具体什么意思呢?因为字符串大小不固定有长有短,比如我们要保存"hello"这个字符串,那么对于len和alloc变量来说,最合适的变量类型应该是uint8,用一个字节来存储就够了,如果用uint16、uint32或uint64都显得有点太浪费。基于此SDS根据需要保存的字符串长度设计了如下5种flag类型,flag本身占用1个字节,如下表所示:
flag | flag_value | 字符串长度(len)字节 | (len、alloc) type |
SDS_TYPE_5 | 0 | 特殊 | 特殊 |
SDS_TYPE_8 | 1 | len < (1 << 8) 256 | uint8 |
SDS_TYPE_16 | 2 | len < (1 << 16) 65536 | uint16 |
SDS_TYPE_32 | 3 | len < (1 << 32) | uint32 |
SDS_TYPE_64 | 4 | len >= (1 << 32) | uint64 |
假设我们要保存的字符串长度为len:
- SDS_TYPE_5:这个比较特殊,注释上说未被使用,但是也不完全准确,无论如何这个类型都不是我们讨论的重点。
- SDS_TYPE_8: 当len 小于 1 << 8,也就是小于256时,变量len和alloc用uint8类型。
- SDS_TYPE_16: 当len 小于 1 << 16,也就是小于65536时,变量len和alloc用uint16类型。
- SDS_TYPE_32: 当len 小于 1 << 32,也就是小于4294967296时,变量len和alloc用uint32类型。
- SDS_TYPE_64: 当len 大于等于 1 << 32,也就是大于等于4294967296时,变量len和alloc用uint64类型。
我们来举个简单例子,假设我们要用SDS(“hello”)保存"hello"这个字符串。"hello"长度为5个字节,len为5,是小于 1 << 8。因此flag为SDS_TYPE_8,len、alloc变量类型为uint8各自占用一个字节,flag始终占用1个字节,如下图所示:
len值为5:表示hello字符串长度为5个字节;
alloc值为12: 表示一共分配出来可用空间12字节。buff总长度为13字节,由于null-term要额外占用1字节不能计算在内,因此需要减1;
flag值为1: 表示的是SDS_TYPE_8类型;
buff部分
Buff比较简单主要分为2个部分: 第一个部分是原生的C字符串,以null-term
结尾,第二个部分是还未使用的额外空间,如下图所示。
前面说过SDS可以在一定程度上兼容C字符串,只要C-String部分是binary-safe
,用户可以拿到SDS的buff起始地址(图中return to user),在只读场景当作原生C字符串使用。
还是以前面的"hello"字符串为例:
buff部分索引0~5存储"hello"的C字符串,索引6到索引12是预留空间还未使用。如果后续需要追加字符串并且在8个字节以内,即可直接修改,无需重新分配内存空间。
SDS扩容规则
当我们要往原SDS追加字符串时会触发SDS的扩容,为了阐述方便,我们定义如下变量:
len
= 原SDS长度;
avail
= 原SDS剩余预留空间长度;
addlen
= 追加字符串的长度;
newlen
= len + addlen 追加后字符串的总长度;
SDS的扩容规则如下:
- 如果原SDS预留空间空间avail大于等于追加字符串的长度addlen,不会触发扩容。
- 如果追加后的字符串总长度newlen小于1MB(1024*1024),将newlen扩容为2倍再加1(null-term),也就是newlen = newlen * 2 + 1。
- 如果追加后的字符串总长度newlen大于等于1MB(1024*1024),将newlen额外扩容1MB再加1(null-term),也就是newlen = newlen + 1MB + 1。
需要注意的是,如果newlen大于flag
所指定的范围,flag
的类型也需要随之变大。
我们来举几个例子,依次看一下这2个扩容规则:
规则1:假设有如下图的SDS(“hello”),我们要追加字符串",world"。
变量初始化如下:
len = 5;
avail = alloc - len = 12 - 5 = 7;
addlen = “,world”的长度 = 6;
newlen = 5 + 6 = 11;
按照扩容规则,avail > addlen,不会触发扩容,因此可以原地追加,追加后的SDS如下图所示:
Redis系列-3.Redis底层数据结构原理(下):https://developer.aliyun.com/article/1414380