Redis系列-3.Redis底层数据结构原理(下)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis系列-3.Redis底层数据结构原理

Redis系列-3.Redis底层数据结构原理(上):https://developer.aliyun.com/article/1414368


规则2:上面的SDS(“hello,world”)基础上,我们继续追加字符串";nihao"。

变量初始化如下:


len = 11;


avail = alloc - len = 12 - 11 = 1;


addlen = “;nihao”的长度 = 6;


newlen = 11 + 6 = 17;


按照扩容规则,avail < addlen,不满足规则1,newlen < 1MB,满足扩容规则2,因此扩容后的newlen为:


newlen = 17 * 2 + 1 = 35;


如下图所示:


总结


SDS巧妙的利用空间换时间的思想,虽然额外牺牲了一些空间,但是换来的是在高频场景下更佳优异的性能表现以及更好的兼容性。


集合的底层实现原理


Redis 中对于 Set 类型的底层实现,直接采用了 hashTable。但对于 Hash、ZSet、List 集合的底层实现进行了特殊的设计,使其保证了 Redis 的高性能。


两种实现的选择


对于Hash与ZSet集合,其底层的实现实际有两种:压缩列表zipList,与跳跃列表skipList。这两种实现对于用户来说是透明的,但用户写入不同的数据,系统会自动使用不同的实现。只有同时满足以配置文件 redis.conf 中相关集合元素数量阈值与元素大小阈值两个条件,使用的就是压缩列表 zipList,只要有一个条件不满足使用的就是跳跃列表 skipList。例如,对于ZSet 集合中这两个条件如下:


  • 集合元素个数小于 redis.conf 中 zset-max-ziplist-entries 属性的值,其默认值为 128
  • 每个集合元素大小都小于 redis.conf 中 zset-max-ziplist-value 属性的值,其默认值为 64字节


zipList



什么是 zipList


zipList,通常称为压缩列表,是一个经过特殊编码的用于存储字符串或整数的双向链表。其底层数据结构由三部分构成:head、entries 与 end。这三部分在内存上是连续存放的。


head


head 又由三部分构成:


  • zlbytes:占 4 个字节,用于存放 zipList 列表整体数据结构所占的字节数,包括 zlbytes本身的长度。
  • zltail:占 4 个字节,用于存放 zipList 中最后一个 entry 在整个数据结构中的偏移量(字节)。该数据的存在可以快速定位列表的尾 entry 位置,以方便操作。
  • zllen:占 2 字节,用于存放列表包含的 entry 个数。由于其只有 16 位,所以 zipList 最多可以含有的 entry 个数为 2^16-1 = 65535 个。


entries


entries 是真正的列表,由很多的列表元素 entry 构成。由于不同的元素类型、数值的不同,从而导致每个 entry 的长度不同。


每个 entry 由三部分构成:


  • prevlength:该部分用于记录上一个 entry 的长度,以实现逆序遍历。默认长度为 1 字节,只要上一个 entry 的长度<254 字节,prevlength 就占 1 字节,否则其会自动扩展为 3 字节长度。
  • encoding:该部分用于标志后面的 data 的具体类型。如果 data 为整数类型,encoding固定长度为 1 字节。如果 data 为字符串类型,则 encoding 长度可能会是 1 字节、2 字节或 5 字节。data 字符串不同的长度,对应着不同的 encoding 长度。
  • data:真正存储的数据。数据类型只能是整数类型或字符串类型。不同的数据占用的字节长度不同。


end


end 只包含一部分,称为 zlend。占 1 个字节,值固定为 255,即二进制位为全 1,表示一个 zipList 列表的结束。


listPack


对于 ziplist,实现复杂,为了逆序遍历,每个 entry 中包含前一个 entry 的长度,这样会导致在 ziplist 中间修改或者插入 entry 时需要进行级联更新。在高并发的写操作场景下会极度降低 Redis 的性能。为了实现更紧凑、更快的解析,更简单的实现,重写实现了 ziplist,并命名为 listPack。


在 Redis 7.0 中,已经将 zipList 全部替换为了 listPack,但为了兼容性,在配置中也保留了 zipList 的相关属性。


什么是 listPack


listPack 也是一个经过特殊编码的用于存储字符串或整数的双向链表。其底层数据结构也由三部分构成:head、entries 与 end,且这三部分在内存上也是连续存放的。


listPack与zipList的重大区别在head与每个entry的结构上,表示列表结束的end与zipList的 zlend 是相同的,占一个字节,且 8 位全为 1。


head


head 由两部分构成:


  • totalBytes:占 4 个字节,用于存放 listPack 列表整体数据结构所占的字节数,包括totalBytes 本身的长度。
  • elemNum:占 2 字节,用于存放列表包含的 entry 个数。其意义与 zipList 中 zllen 的相同。


与 zipList 的 head 相比,没有了记录最后一个 entry 偏移量的 zltail。


entries


entries 也是 listPack 中真正的列表,由很多的列表元素 entry 构成。由于不同的元素类型、数值的不同,从而导致每个 entry 的长度不同。但与 zipList 的 entry 结构相比,listPack的 entry 结构发生了较大变化。


其中最大的变化就是没有了记录前一个 entry 长度的 prevlength,而增加了记录当前entry 长度的 element-total-len。而这个改变仍然可以实现逆序遍历,但却避免了由于在列表中间修改或插入 entry 时引发的级联更新。


每个 entry 仍由三部分构成:


  • encoding:该部分用于标志后面的 data 的具体类型。如果 data 为整数类型,encoding长度可能会是 1、2、3、4、5 或 9 字节。不同的字节长度,其标识位不同。如果 data为字符串类型,则 encoding 长度可能会是 1、2 或 5 字节。data 字符串不同的长度,对应着不同的 encoding 长度。
  • data:真正存储的数据。数据类型只能是整数类型或字符串类型。不同的数据占用的字节长度不同。
  • element-total-len:该部分用于记录当前 entry 的长度,用于实现逆序遍历。由于其特殊的记录方式,使其本身占有的字节数据可能会是 1、2、3、4 或 5 字节。


逆序遍历


在 Redis 中,ziplist 是一种紧凑的、压缩的、连续的内存数据结构,用于存储列表、哈希和有序集合等数据类型。listPack 是 ziplist 的一种变体,用于存储列表数据。


要实现逆序遍历 ziplist 或 listPack,可以使用以下步骤:


首先,通过指针定位到整个 ziplist 或 listPack 的末尾(即最后一个节点)。


然后,从末尾节点开始按照逆序遍历的顺序向前遍历。


每次迭代时,可以使用 prevlength 字段(对于 ziplist)或 element-total-len 字段(对于 listPack)来获取当前节点的长度。


通过减去当前节点的长度,可以得到上一个节点在内存中的位置,然后将指针移动到上一个节点。


重复上述步骤,直到遍历完所有节点。


需要注意的是,ziplist 和 listPack 的数据结构比较复杂,包含了多个字段和指针。在实际操作中,需要仔细处理指针的移动和字段的解析,以确保正确地实现逆序遍历。


skipList


什么是 skipList


skipList,跳跃列表,简称跳表,是一种随机化的数据结构,基于并联的链表,实现简单,查找效率较高。简单来说跳表也是链表的一种,只不过它在链表的基础上增加了跳跃功能。也正是这个跳跃功能,使得在查找元素时,能够提供较高的效率。


skipList 原理


假设有一个带头尾结点的有序链表。

在该链表中,如果要查找某个数据,需要从头开始逐个进行比较,直到找到包含数据的那个节点,或者找到第一个比给定数据大的节点,或者找到最后尾结点,后两种都属于没有找到的情况。同样,当我们要插入新数据的时候,也要经历同样的查找过程,从而确定插入位置。


为了提升查找效率,在偶数结点上增加一个指针,让其指向下一个偶数结点。

这样所有偶数结点就连成了一个新的链表(简称高层链表),当然,高层链表包含的节点个数只是原来链表的一半。此时再想查找某个数据时,先沿着高层链表进行查找。当遇到第一个比待查数据大的节点时,立即从该大节点的前一个节点回到原链表中进行查找。例如,若想插入一个数据 20,则先在(8,19,31,42)的链表中查找,找到第一个比 20 大的节点 31,然后再在高层链表中找到 31 节点的前一个节点 19,然后再在原链表中获取到其下一个节点值为 23。比 20 大,则将 20 插入到 19 节点与 23 节点之间。若插入的是 25,比节点23 大,则插入到 23 节点与 31 节点之间。


该方式明显可以减少比较次数,提高查找效率。如果链表元素较多,为了进一步提升查找效率,可以将原链表构建为三层链表,或再高层级链表。

层级越高,查找效率就会越高。


存在的问题


这种对链表分层级的方式从原理上看确实提升了查找效率,但在实际操作时就出现了问题:由于固定序号的元素拥有固定层级,所以列表元素出现增加或删除的情况下,会导致列表整体元素层级大调整,但这样势必会大大降低系统性能。


例如,对于划分两级的链表,可以规定奇数结点为高层级链表,偶数结点为低层级链表。对于划分三级的链表,可以按照节点序号与 3 取模结果进行划分。但如果插入了新的节点,或删除的原来的某些节点,那么定会按照原来的层级划分规则进行重新层级划分,那么势必会大大降低系统性能


算法优化


为了避免前面的问题,skipList 采用了随机分配层级方式。即在确定了总层级后,每添加一个新的元素时会自动为其随机分配一个层级。这种随机性就解决了节点序号与层级间的固定关系问题。

上图演示了列表在生成过程中为每个元素随机分配层级的过程。从这个 skiplist 的创建和插入过程可以看出,每一个节点的层级数都是随机分配的,而且新插入一个节点不会影响到其它节点的层级数。只需要修改插入节点前后的指针,而不需对很多节点都进行调整。这就降低了插入操作的复杂度。


skipList 指的就是除了最下面第 1 层链表之外,它会产生若干层稀疏的链表,这些链表里面的指针跳过了一些节点,并且越高层级的链表跳过的节点越多。在查找数据的时先在高层级链表中进行查找,然后逐层降低,最终可能会降到第 1 层链表来精确地确定数据位置。在这个过程中由于跳过了一些节点,从而加快了查找速度。


quickList



什么是 quickList


quickList,快速列表,quickList 本身是一个双向无循环链表,它的每一个节点都是一个zipList。从Redis3.2版本开始,对于List的底层实现,使用quickList替代了zipList 和 linkedList。


zipList 与 linkedList 都存在有明显不足,而 quickList 则对它们进行了改进:吸取了 zipList 和 linkedList 的优点,避开了它们的不足。


quickList 本质上是 zipList 和 linkedList 的混合体。其将 linkedList 按段切分,每一段使用 zipList 来紧凑存储若干真正的数据元素,多个 zipList 之间使用双向指针串接起来。当然,对于每个 zipList 中最多可存放多大容量的数据元素,在配置文件中通过 list-max-ziplist-size属性可以指定。


检索操作


为了更深入的理解 quickList 的工作原理,通过对检索、插入、删除等操作的实现分析来加深理解。


对于 List 元素的检索,都是以其索引 index 为依据的。quickList 由一个个的 zipList 构成,每个 zipList 的 zllen 中记录的就是当前 zipList 中包含的 entry 的个数,即包含的真正数据元素的个数。根据要检索元素的 index,从 quickList 的头节点开始,逐个对 zipList 的 zllen 做 sum求和,直到找到第一个求和后 sum 大于 index 的 zipList,那么要检索的这个元素就在这个zipList 中。


插入操作


由于 zipList 是有大小限制的,所以在 quickList 中插入一个元素在逻辑上相对就比较复杂一些。假设要插入的元素的大小为 insertBytes,而查找到的插入位置所在的 zipList 当前的大小为 zlBytes,那么具体可分为下面几种情况:


  • 情况一:当 insertBytes + zlBytes <= list-max-ziplist-size 时,直接插入到 zipList 中相应位置即可
  • 情况二:当 insertBytes + zlBytes > list-max-ziplist-size,且插入的位置位于该 zipList 的首部位置,此时需要查看该 zipList 的前一个 zipList 的大小 prev_zlBytes。


若 insertBytes + prev_zlBytes<= list-max-ziplist-size 时,直接将元素插入到前一个zipList 的尾部位置即可;

若 insertBytes + prev_zlBytes> list-max-ziplist-size 时,直接将元素自己构建为一个新的 zipList,并连入 quickList 中


  • 情况三:当 insertBytes + zlBytes > list-max-ziplist-size,且插入的位置位于该 zipList 的尾部位置,此时需要查看该 zipList 的后一个 zipList 的大小 next_zlBytes。


若 insertBytes + next_zlBytes<= list-max-ziplist-size 时,直接将元素插入到后一个zipList 的头部位置即可;

若 insertBytes + next_zlBytes> list-max-ziplist-size 时,直接将元素自己构建为一个新的 zipList,并连入 quickList 中


  • 情况四:当 insertBytes + zlBytes > list-max-ziplist-size,且插入的位置位于该 zipList 的中间位置,则将当前 zipList 分割为两个 zipList 连接入 quickList 中,然后将元素插入到分割后的前面 zipList 的尾部位置


删除操作


对于删除操作,只需要注意一点,在相应的 zipList 中删除元素后,该 zipList 中是否还有元素。如果没有其它元素了,则将该 zipList 删除,将其前后两个 zipList 相连接。

目录
相关文章
|
存储 缓存 NoSQL
Redis 服务器全方位介绍:从入门到核心原理
Redis是一款高性能内存键值数据库,支持字符串、哈希、列表等多种数据结构,广泛用于缓存、会话存储、排行榜及消息队列。其单线程事件循环架构保障高并发与低延迟,结合RDB和AOF持久化机制兼顾性能与数据安全。通过主从复制、哨兵及集群模式实现高可用与横向扩展,适用于现代应用的多样化场景。合理配置与优化可显著提升系统性能与稳定性。
256 0
|
2月前
|
消息中间件 缓存 NoSQL
Redis各类数据结构详细介绍及其在Go语言Gin框架下实践应用
这只是利用Go语言和Gin框架与Redis交互最基础部分展示;根据具体业务需求可能需要更复杂查询、事务处理或订阅发布功能实现更多高级特性应用场景。
273 86
|
2月前
|
存储 消息中间件 NoSQL
Redis数据结构:别小看这5把“瑞士军刀”,用好了性能飙升!
Redis提供5种基础数据结构及多种高级结构,如String、Hash、List、Set、ZSet,底层通过SDS、跳表等实现高效操作。灵活运用可解决缓存、计数、消息队列、排行榜等问题,结合Bitmap、HyperLogLog、GEO更可应对签到、UV统计、地理位置等场景,是高性能应用的核心利器。
|
2月前
|
存储 缓存 NoSQL
Redis基础命令与数据结构概览
Redis是一个功能强大的键值存储系统,提供了丰富的数据结构以及相应的操作命令来满足现代应用程序对于高速读写和灵活数据处理的需求。通过掌握这些基础命令,开发者能够高效地对Redis进行操作,实现数据存储和管理的高性能方案。
114 12
|
2月前
|
存储 消息中间件 NoSQL
【Redis】常用数据结构之List篇:从常用命令到典型使用场景
本文将系统探讨 Redis List 的核心特性、完整命令体系、底层存储实现以及典型实践场景,为读者构建从理论到应用的完整认知框架,助力开发者在实际业务中高效运用这一数据结构解决问题。
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
1013 9
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
287 59
|
5月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
118 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
10月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
500 77

热门文章

最新文章

下一篇
oss云网关配置