第3期 MongoDB与SQL存储

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: 第3期 MongoDB与SQL存储

一、 前言

MongoDB是一种流行的数据库,可以在不受任何表格Schema模式的约束下工作。数据以类似JSON的格式存储,并且可以包含不同类型的数据结构。但为了能够充分利用MongoDB的优势,您必须了解并遵循一些基本的数据库设计原则。在讲解设计方法之前,我们必须首先了解MongoDB存储数据的结构。

二、SQL概念与MongoDB概念对比

数据结构对于一个软件来说是至关重要的,MongoDB 在概念模型上参考了 SQL数据库,但并非完全相同。

2.1 数据如何存储在MongoDB中

与传统的RDBMS关系型数据库不同,MongoDB并没有表Table,行row和列column的概念。它将数据存储在集合collections,文档documents和字段fields中。下图说明了与RDBMS类比的结构之间的关系:

SQL概念 MongoDB概念 说明
database database database 数据库,与SQL的数据库(database)概念相同,一个数据库包含多个集合(表)
table collection collection 集合,相当于SQL中的表(table),一个集合可以存放多个文档(行)。不同之处就在于集合的结构- (schema)是动态的,不需要预先声明一个严格的表结构。更重要的是,默认情况下 MongoDB 并不会对写入的数据做任何schema的校验。
row document document 文档,相当于SQL中的行(row),一个文档由多个字段(列)组成,并采用bson(json)格式表示。
column field field 字段,相当于SQL中的列(column),相比普通column的差别在于field的类型可以更加灵活,比如支持嵌套的文档、数组。

此外,MongoDB中字段的类型是固定的、区分大小写、并且文档中的字段也是有序的。

2.2 SQL对应关系

SQL概念 MongoDB概念 说明
primary key _id _id 主键,MongoDB 默认使用一个_id 字段来保证文档的唯一性。
foreign key reference 引用,勉强可以对应于 外键(foreign key) 的概念,之所以是勉强是因为 reference 并没有实现任何外键的约束,而只是由客户端(driver)自动进行关联查询、转换的一个特殊类型。
view view view 视图,MongoDB 3.4 开始支持视图,和 SQL 的视图没有什么差异,视图是基于表/集合之上进行动态查询的一层对象,可以是虚拟的,也可以是物理的(物化视图)。
index index index 索引,与SQL 的索引相同。
join $lookup $lookup,这是一个聚合操作符,可以用于实现类似 SQL-join 连接的功能
transaction transaction transaction 事务,从 MongoDB 4.0 版本开始,提供了对于事务的支持
group by aggregation aggregation 聚合,MongoDB 提供了强大的聚合计算框架,group by 是其中的一类聚合操作。

三、BSON 数据类型

MongoDB 文档可以使用 Javascript 对象表示,从格式上讲,是基于 JSON 的。但是 JSON 也有自己的短板,比如无法支持像日期这样的特定数据类型,因此 MongoDB 实际上使用的是一种扩展式的JSON,叫 BSON(Binary JSON)。

BSON 所支持的数据类型包括:

四、 数据库设计技巧和窍门

4.1 规范化存储与非规范化存储

因为MongoDB使用文档来存储数据,所以理解“规范化存储“”和“非规范化存储”的概念非常重要。

规范化存储:-规范化意味着将数据存储到多个集合collections中,并在它们之间设计关联关系。数据保存之后,更新数据比较容易。但是在读取数据的时候,规范化存储的缺点就显现出来。如果要从多个集合collections查找数据,则必须执行多个查询,从而使读取数据的速度变慢。(比如:将网页标题、作者、内容分别存储到不同的collections中)

非规范化存储:-这种方式将若干对象数据,以嵌套的方式存储到单个文档中。它在读取数据的时候表现更好,但在写入时会变慢。这种存储数据的方式还将占用更多空间。(比如:将网页标题、作者、内容分别存储到同一个collection中)

所以在两种存储数据方式之间进行选择之前,先评估一下你的应用数据库的使用方式。如果您有一个不需要频繁更新的数据,更新的即时一致性不是很重要,但是在读取时需要良好的性能,那么非规范化可能是明智的选择。(比如:我们博客的博文,作者一旦保存之后,几乎就不在进行频繁的修改,但是面临着读者频繁的读取阅读操作)

如果数据库中的文档数据需要不断的更新,并且您希望在写入时具有良好的性能,那么您可能需要考虑规范化存储。(比如:需要频繁修改数据的业务类系统)

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
相关文章
|
6月前
|
存储 SQL Web App开发
SQL实践篇(一):使用WebSQL在H5中存储一个本地数据库
SQL实践篇(一):使用WebSQL在H5中存储一个本地数据库
144 2
|
6月前
|
SQL 存储 数据库
SQL实践篇(二):为什么微信用SQLite存储聊天记录
SQL实践篇(二):为什么微信用SQLite存储聊天记录
371 1
|
2月前
|
存储 缓存 NoSQL
MongoDB内部的存储原理
这篇文章详细介绍了MongoDB的内部存储原理,包括存储引擎WiredTiger的架构、btree与b+tree的比较、cache机制、page结构、写操作流程、checkpoint和WAL日志,以及分布式存储的架构。
50 1
MongoDB内部的存储原理
|
1月前
|
存储 NoSQL MongoDB
数据的存储--MongoDB文档存储(二)
数据的存储--MongoDB文档存储(二)
|
5月前
|
SQL DataWorks NoSQL
DataWorks产品使用合集之如何将SQL Server中的数据转存到MongoDB
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
278 1
|
1月前
|
存储 NoSQL 关系型数据库
数据的存储--MongoDB文档存储(一)
数据的存储--MongoDB文档存储(一)
|
4月前
|
SQL NoSQL API
MongoDB 增删改查 常用sql总结
MongoDB 增删改查 常用sql总结
146 1
|
5月前
|
存储 JSON NoSQL
深入解析MongoDB的存储原理
深入解析MongoDB的存储原理
深入解析MongoDB的存储原理
|
4月前
|
存储 SQL 数据库
MySQL设计规约问题之为何推荐用DECIMAL代替FLOAT和DOUBLE来存储精确浮点数
MySQL设计规约问题之为何推荐用DECIMAL代替FLOAT和DOUBLE来存储精确浮点数
|
6月前
|
存储 NoSQL MongoDB
【MongoDB 专栏】MongoDB 的 GridFS:存储与检索大文件
【5月更文挑战第10天】MongoDB's GridFS 是用于大规模数据和大文件存储的解决方案,它将文件分割成小块存储在不同文档中,以提升管理效率和避免性能问题。文件上传时记录元数据,通过唯一标识符实现快速检索。GridFS 提供高效存储、便捷检索和扩展性,适用于大文件管理。然而,应注意文件大小限制、数据一致性和性能优化。通过案例分析,展示了 GridFS 在实际应用中的优势和适用场景,为构建强大应用提供支持。
333 1
【MongoDB 专栏】MongoDB 的 GridFS:存储与检索大文件