Leetcode算法系列| 3. 无重复字符的最长子串

简介: Leetcode算法系列| 3. 无重复字符的最长子串


1.题目

给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。

  • 示例1:
输入: s = "abcabcbb"
输出: 3 
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。
  • 示例 2:
输入: s = "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。
  • 示例 3:
输入: s = "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
     请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。
  • 提示:
  • 每0 <= s.length <= 5 * 104
  • s 由英文字母、数字、符号和空格组成

2.题解

C# 解法一:滑动窗口算法

滑动窗口算法(Sliding Window)可以用来解决字符串(数组)的子元素问题,,查找满足一定条件的连续子区间,可以将嵌套的循环问题,转化为单循环问题,降低时间复杂度。

滑动窗口算法需要用到双指针,遍历字符串(数组)时,两个指针都起始于原点,并一前一后地向终点移动,两个指针一前一后夹着的子串(子数组)就像一个窗口,窗口的大小和覆盖范围会随着前后指针的移动而发生变化。

窗口该如何移动需要根据求解的问题来决定,通过左右指针的移动遍历字符串(数组),寻找满足特定条件的连续子区间。

public class Solution {
    public int LengthOfLongestSubstring(string s) {
        HashSet<char> letter = new HashSet<char>();// 哈希集合,记录每个字符是否出现过
        int left = 0,right = 0;//初始化左右指针,指向字符串首位字符
        int length = s.Length;
        int count = 0,max = 0;//count记录每次指针移动后的子串长度
        while(right < length)
        {
            if(!letter.Contains(s[right]))//右指针字符未重复
            {
                letter.Add(s[right]);//将该字符添加进集合
                right++;//右指针继续右移
                count++;
            }
            else//右指针字符重复,左指针开始右移,直到不含重复字符(即左指针移动到重复字符(左)的右边一位)
            { 
                letter.Remove(s[left]);//去除集合中当前左指针字符
                left++;//左指针右移
                count--;
            }
            max = Math.Max(max,count);
        }
        return max;
    }
}

C# 解法二:索引寻找

历所有字符,然后当碰到重复字符时存储值,同时处理List,进行下一队的查找。

public class Solution {
public int LengthOfLongestSubstring(string s) {
        List<char> ls = new List<char>();
        int n = s.Length;
        int intMaxLength = 0;
        for (int i = 0; i < n; i++)
        {
            if (ls.Contains(s[i]))
            {
                ls.RemoveRange(0, ls.IndexOf(s[i]) + 1);
            }
            ls.Add(s[i]);
            intMaxLength = ls.Count > intMaxLength ? ls.Count : intMaxLength;
        }
        return intMaxLength;
    }
 }

Java 解法一:滑动窗口算法

  • 我们不妨以示例一中的字符串 abcabcbb\texttt{abcabcbb}abcabcbb 为例,找出从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:
  • 以 (a)bcabcbb\texttt{(a)bcabcbb}(a)bcabcbb 开始的最长字符串为 (abc)abcbb\texttt{(abc)abcbb}(abc)abcbb;
  • 以 a(b)cabcbb\texttt{a(b)cabcbb}a(b)cabcbb 开始的最长字符串为 a(bca)bcbb\texttt{a(bca)bcbb}a(bca)bcbb;
  • 以 ab©abcbb\texttt{ab©abcbb}ab©abcbb 开始的最长字符串为 ab(cab)cbb\texttt{ab(cab)cbb}ab(cab)cbb;
  • 以 abc(a)bcbb\texttt{abc(a)bcbb}abc(a)bcbb 开始的最长字符串为 abc(abc)bb\texttt{abc(abc)bb}abc(abc)bb;
  • 以 abca(b)cbb\texttt{abca(b)cbb}abca(b)cbb 开始的最长字符串为 abca(bc)bb\texttt{abca(bc)bb}abca(bc)bb;
  • 以 abcab©bb\texttt{abcab©bb}abcab©bb 开始的最长字符串为 abcab(cb)b\texttt{abcab(cb)b}abcab(cb)b;
  • 以 abcabc(b)b\texttt{abcabc(b)b}abcabc(b)b 开始的最长字符串为 abcabc(b)b\texttt{abcabc(b)b}abcabc(b)b;
  • 以 abcabcb(b)\texttt{abcabcb(b)}abcabcb(b) 开始的最长字符串为 abcabcb(b)\texttt{abcabcb(b)}abcabcb(b)。

  • 这样一来,我们就可以使用「滑动窗口」来解决这个问题了:
  • 我们使用两个指针表示字符串中的某个子串(或窗口)的左右边界,其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的 rk;
  • 在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着 以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;
  • 在枚举结束后,我们找到的最长的子串的长度即为答案。
  • 判断重复字符
  • 在上面的流程中,我们还需要使用一种数据结构来判断 是否有重复的字符,常用的数据结构为哈希集合(即 C++ 中的 std::unordered_set,Java 中的 HashSet,Python 中的 set, JavaScript 中的 Set)。在左指针向右移动的时候,我们从哈希集合中移除一个字符,在右指针向右移动的时候,我们往哈希集合中添加一个字符。
class Solution {
    public int lengthOfLongestSubstring(String s) {
        // 哈希集合,记录每个字符是否出现过
        Set<Character> occ = new HashSet<Character>();
        int n = s.length();
        // 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动
        int rk = -1, ans = 0;
        for (int i = 0; i < n; ++i) {
            if (i != 0) {
                // 左指针向右移动一格,移除一个字符
                occ.remove(s.charAt(i - 1));
            }
            while (rk + 1 < n && !occ.contains(s.charAt(rk + 1))) {
                // 不断地移动右指针
                occ.add(s.charAt(rk + 1));
                ++rk;
            }
            // 第 i 到 rk 个字符是一个极长的无重复字符子串
            ans = Math.max(ans, rk - i + 1);
        }
        return ans;
    }
}

Java 解法二:遍历字符串

  • 遍历字符串,每次以 i 值记录,不回溯 i 值,用flag记录遍历过程找到的重复的字符的位置。如果遇到重复字符,i-flag 即为子串长度,此时flag重新定位到子串中重复字符的位置,i 继续往后遍历。这里length跟result记录长度
class Solution {
  public int lengthOfLongestSubstring(String s) {
    int i = 0;
    int flag = 0;
    int length = 0;
    int result = 0;
    while (i < s.length()) {
      int pos = s.indexOf(s.charAt(i),flag);
      if (pos < i) {
        if (length > result) {
          result = length;
        }
        if (result >= s.length() - pos - 1) {
          return result;
        }
        length = i - pos - 1;
        flag = pos + 1;
      }
      length++;
      i++;
    }
    return length;
  }
}

相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
47 0
|
1月前
|
存储 算法
Leetcode第三题(无重复字符的最长子串)
这篇文章介绍了解决LeetCode第三题“无重复字符的最长子串”的算法,使用滑动窗口技术来找出给定字符串中最长的不含重复字符的子串,并提供了详细的代码实现和解释。
65 0
Leetcode第三题(无重复字符的最长子串)
|
1月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
38 0
|
3月前
|
算法
【算法】位运算算法——判断字符是否唯一
【算法】位运算算法——判断字符是否唯一
|
3月前
|
算法
【算法】滑动窗口——无重复字符的最长子串
【算法】滑动窗口——无重复字符的最长子串
|
9天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
30天前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
23 2
|
3月前
|
算法
测试工程师的技能升级:LeetCode算法挑战与职业成长
这篇文章通过作者亲身体验LeetCode算法题的过程,探讨了测试工程师学习算法的重要性,并强调了算法技能对于测试职业成长的必要性。
68 1
测试工程师的技能升级:LeetCode算法挑战与职业成长
|
3月前
|
算法
LeetCode第3题无重复字符的最长子串
该文章介绍了 LeetCode 第 3 题无重复字符的最长子串的解法,通过使用 HashSet 记录不重复的子元素,以每个字符开头遍历字符串,遇到重复字符则重新计算,最终找到最长子串,同时提到可以考虑使用 HashMap 降低复杂度。
LeetCode第3题无重复字符的最长子串
|
3月前
|
存储 算法 Java
LeetCode经典算法题:打家劫舍java详解
LeetCode经典算法题:打家劫舍java详解
68 2