第十四届蓝桥杯第三期模拟赛 【python】(二)

简介: 第十四届蓝桥杯第三期模拟赛 【python】(二)

第十四届蓝桥杯第三期模拟赛 【python】(一):https://developer.aliyun.com/article/1410161

小蓝有一个 n * m 大小的矩形水域,小蓝将这个水域划分为 n 行 m 列,行数从 1 到 n 标号,列数从 1 到 m 标号。每行和每列的宽度都是单位 1 。

现在,这个水域长满了水草,小蓝要清理水草。

每次,小蓝可以清理一块矩形的区域,从第 r1 行(含)到第 r2 行(含)的第 c1 列(含)到 c2 列(含)。

经过一段时间清理后,请问还有多少地方没有被清理过。

输入格式

输入第一行包含两个整数 n, m,用一个空格分隔。

第二行包含一个整数 t ,表示清理的次数。

接下来 t 行,每行四个整数 r1, c1, r2, c2,相邻整数之间用一个空格分隔,表示一次清理。请注意输入的顺序。

输出格式

输出一行包含一个整数,表示没有被清理过的面积。

样例输入

2 3
2
1 1 1 3
1 2 2 2

样例输出

2

样例输入

30 20
2
5 5 10 15
6 7 15 9

样例输出

519

评测用例规模与约定

对于所有评测用例,1 <= r1 <= r2 <= n <= 100, 1 <= c1 <= c2 <= m <= 100, 0 <= t <= 100。

🧠思路

感觉这道题也是一样的,和前面的信号覆盖也是类似的,并且数据也不是很大,所以首先就用模拟的穷举也可以很快的写出来,只要把清理过的标为0,其他均为1,之后进行求和即可

所以以下简单的思路还是用一个flag数组表示是否清理过,然后计数所有清理过的草坪,最后总数-清理过的草坪就可以得到未清理过的草坪了。

🖥︎参考代码

w,h = map(int,input().split())
t = int(input())
flag = [[0]*(h+1) for _ in range(w+1)] # flag[i][j]代表是否清理过
cnt = 0
for _ in range(t):
    r1, c1, r2, c2 = map(int,input().split())
    for i in range(r1,r2+1):
        for j in range(c1,c2+1):
            if flag[i][j] == 0:
                flag[i][j] = 1
                cnt += 1 # 清理过的草坪+1
print(w*h-cnt) # 剩余未清理的草坪

✨最长滑行(DFS搜索)

❓️问题描述

小蓝准备在一个空旷的场地里面滑行,这个场地的高度不一,小蓝用一个 n 行 m 列的矩阵来表示场地,矩阵中的数值表示场地的高度。

如果小蓝在某个位置,而他上、下、左、右中有一个位置的高度(严格)低于当前的高度,小蓝就可以滑过去,滑动距离为 1 。

如果小蓝在某个位置,而他上、下、左、右中所有位置的高度都大于等于当前的高度,小蓝的滑行就结束了。

小蓝不能滑出矩阵所表示的场地。

小蓝可以任意选择一个位置开始滑行,请问小蓝最多能滑行多远距离。

输入格式

输入第一行包含两个整数 n, m,用一个空格分隔。

接下来 n 行,每行包含 m 个整数,相邻整数之间用一个空格分隔,依次表示每个位置的高度。

输出格式

输出一行包含一个整数,表示答案。

样例输入

4 5
1 4 6 3 1
11 8 7 3 1
9 4 5 2 1
1 3 2 2 1

样例输出

7


样例说明

滑行的位置一次为 (2, 1), (2, 2), (2, 3), (3, 3), (3, 2), (4, 2), (4, 3)。

评测用例规模与约定

对于 30 % 评测用例,1 < = n < = 20 , 1 < = m < = 20 1 < = n < = 20, 1 < = m < = 201<=n<=20,1<=m<=20 ,0 < = 高度 < = 100 0 < = 高度 < = 1000<=高度<=100 。

对于所有评测用例,1 < = n < = 100 , 1 < = m < = 100 , 0 < = 高度 < = 10000 1 < = n < = 100 ,1 < = m < = 100 ,0 < = 高度 < = 100001<=n<=100,1<=m<=100,0<=高度<=10000 。

🧠思路

这道题实际上就是一道搜索问题,本质上我们还是使用DFS进行求解,我们可以从任意一个点开始搜索,然后最后取最大值就是我们最后的结果。这里我们使用DFS求解,为了加快速度,我们还是使用了记忆化搜索,如果发现已经搜索过了,就直接返回结果即可。

首先简单讲一讲DFS的思路吧,我们会从当前x,y进行不断搜索,然后发现下一个点符合条件,在范围内且严格小于当前点的高度,我们就继续搜索,因为我们要取最长,所以我们要取max,不断取最优的结果,最后都记录到我们的dp数组中

这样在下一次搜索的时候,如果发现当前的dp数组的值已经被记录过了,那我们就直接返回值即可,就不需要那么多花里胡哨的操作,其实这道题可能也叫树形的DFS,有时候还是会出现的,不过思路还是OK的,就是类似于树形一样不断迭代dfs而已,最后就是还要加上这个递归深度的代码,这样保证自己不会出错!!!

🖥︎参考代码

import sys
sys.setrecursionlimit(1<<31-1) # 设置最大的递归深度
n,m = map(int,input().split())
a = []
for _ in range(n):
    a.append(list(map(int,input().split())))
dp = [[-1]*m for _ in range(n)] # 记忆化搜索
f = [(-1,0),(1,0),(0,-1),(0,1)]
# 返回从x,y开始的最长距离
def dfs(x,y):
    if dp[x][y] != -1: return dp[x][y] # 如果说明不为-1,说明已经记录过了,直接返回即可
    res = 1
    for fx,fy in f:
        nx,ny = x+fx,y+fy
        if 0<=nx<n and 0<=ny<m and a[x][y] > a[nx][ny]:
            # dfs(nx,ny)代表从ny,ny的最长距离
            res = max(res,dfs(nx,ny) + 1) # 不断取最优的
    dp[x][y] = res # 记录当前值
    return dp[x][y]
ans = 0
for i in range(n):
    for j in range(m):
        ans = max(ans, dfs(i,j))
print(ans)


✨区间最小值(ST表模板题)

❓️问题描述

小蓝有一个序列 a [ 1 ] , a [ 2 ] , … , a [ n ] a[1], a[2], …, a[n]a[1],a[2],…,a[n]。

给定一个正整数 k,请问对于每一个 1 到 n 之间的序号 i,a [ i − k ] , a [ i − k + 1 ] , … , a [ i + k ] a[i-k], a[i-k+1], …, a[i+k]a[i−k],a[i−k+1],…,a[i+k] 这 2k+1 个数中的最小值是多少?

当某个下标超过 1 到 n 的范围时,数不存在,求最小值时只取存在的那些值。

输入格式

输入的第一行包含一整数 n。

第二行包含 n 个整数,分别表示 a[1], a[2], …, a[n]。

第三行包含一个整数 k 。

输出格式

输出一行,包含 n 个整数,分别表示对于每个序号求得的最小值。

样例输入

5
5 2 7 4 3
1

样例输出

2 2 2 3 3

评测用例规模与约定

对于 30%的评测用例,1 < n < = 1000 , 1 < = a [ i ] < = 1000 1 < n <= 1000,1 <= a[i]

对于60%的评测用例,1 < = n < = 10000 , 1 < = a [ i ] < = 50000 1 <= n <= 10000,1 <= a

对于所有评测用例,1 < = n < = 100000 , 1 < = a [ i ] < = 1000000 1 <= n <= 100000

🧠思路

这道题属于一个模板题,就是需要知道这个ST表的模板,接下来我来介绍一下

RMQ问题

RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于一个长度N的数组,在多次询问中,每次都以O(1)的时间得到区间[a, b]的最大值或最小值。

ST ( Sparse Table ) 算法

ST(Sparse Table)算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O ( 1 ) O(1)O(1)时间内回答每个查询。其思想就是保存以i为起点的某段数据的最小值。

预处理,用动态规划(DP)解决。思想接近于二路归并排序过程的分治思想。

既然是DP思想,首先要记录每步的状态。

设A [ i ] A[i]A[i]是要求区间最值的数列,F [ i , j ] F[i, j]F[i,j]表示从第i ii个数起连续2 j

个数中的最大值。 这里的F [ i , j ] F[i, j]F[i,j]就是每步的状态。

例如:

A数列为:3 2 4 5 6 8 1 2 9 7

F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。

同理 : F[1,1] = max(3,2) = 3, F[1,2]=max(3,2,4,5) = 5,F[1,3] = max(3,2,4,5,6,8,1,2) = 8;

状态转移方程

既然有每步的状态了,开始找状态转移方程。

image.png

怎么理解呢?

image.png

我们可以在看一个图

image.png

代码如下:

def RMQ():
    t=int(math.log2(length)) # 注意边界,取log2
    dp=[[0]*(t+1) for _ in range(length+1)]
    for i in range(1,length+1): dp[i][0]=data[i] # 初始化
    for j in range(1,t+1):
        for i in range(length-(1<<i)+1): # i + 1<<j - 1 <= n 进行转化
            dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]) # 状态转移方程


查询区间

那么查询怎么做呢?毕竟我们存放的都是2次幂个数的最小值。假如查询的区间是奇数个,或不是2次幂个数怎么弄?

其实很简单,就是把头尾分开!

假如我们需要查询的区间为(i,j),那么我们需要找到小于这个闭区间(左边界取i,右边界取j)的最大幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)

  1. 区间的长度为j - i + 1
  2. 可以取t=log2( j - i + 1) 区间是1->3 就取 log2( 3 - 1 + 1) = 1小于等于区间的最大幂
  3. RMQ(A, i, j)=max{F[i , t], F[ j - 2 ^ t + 1, t]}

所以总结下来,先计算出一个满足2 t < r − l + 1 < 2 t + 1 2^t<r−l+1<2^{t+1}2  <r−l+1<2  的t值,即小于区间长度的2的最高次幂。

显然,区间[ l , l + 2 t − 1 ] [l,l+2^{t-1}][l,l+2

]和[ r − 2 t + 1 , r ] [r-2^{t}+1,r][r−2  +1,r]一定覆盖了区间[l,r],如下图:

image.png

所以知道了所有的方法,直接套用st模板即可

其实还有更简单的,但是可能不能全过,但是我们肯定能拿分,就是直接穷举呗,本身python也有min函数

🖥︎参考代码

ST模板

import math
# ST模板
class ST:
    def __init__(self,data):
        length = len(data)
        data = [0] + data # 变成 1-indexing
        t = int(math.log2(length)) # 取log2
        dp=[[float('inf')]*(t+1) for _ in range(length+1)] # 定义DP数组
        for i in range(1,length+1):
            dp[i][0] = data[i] # 初始化
        for j in range(1,t+1):
            for i in range(length-(1<<j)+1 + 1): # i + 1<<j - 1 <= n 进行转化
                dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]) # 状态转移方程
        self.dp=dp
    def query(self,L,R):
        t = int(math.log2(R-L+1))
        dp= self.dp
        return min(dp[L][t],dp[R-(1<<t)+1][t])
n = int(input())
a = list(map(int,input().split())) # 0-indexing
k = int(input())
st = ST(a) # 构建st表
for i in range(1,n+1):
    l = max(1,i-k)  
    r = min(n,i+k)
    print(st.query(l,r),end=' ')


穷举

我感觉穷举可以拿60%的分

n = int(input())
a = list(map(int,input().split()))
k = int(input())
for i in range(n):
    l = max(0,i-k)
    r = min(i+k,n-1)
    print(min(a[l:r+1]),end=' ')



相关文章
|
2月前
|
Python
蓝桥杯练习题(一):Python组之入门训练题
这篇文章是关于蓝桥杯Python组的入门训练题,包括Fibonacci数列、圆的面积、序列求和和A+B问题的具体代码实现和样例输出。
142 0
|
2月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
113 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
2月前
|
人工智能 Python
蓝桥杯练习题(四):Python组之历届试题三十题
关于蓝桥杯Python组历届试题的三十个练习题的总结,包括题目描述、输入输出格式、样例输入输出以及部分题目的解题思路和代码实现。
46 0
蓝桥杯练习题(四):Python组之历届试题三十题
|
2月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(二):Python组之基础练习三十题
蓝桥杯Python编程练习题的集合,包含了三十个不同难度的编程题目,覆盖了基础语法、数据结构和算法等领域。
46 0
|
7月前
|
索引 Python 容器
【备战蓝桥杯】探索Python内置标准库collections的使用
【备战蓝桥杯】探索Python内置标准库collections的使用
100 1
|
7月前
|
开发者 Python
【备战蓝桥杯】如何使用Python 内置模块datetime去计算我与CSDN相遇的天数
【备战蓝桥杯】如何使用Python 内置模块datetime去计算我与CSDN相遇的天数
74 1
|
7月前
|
算法 测试技术 编译器
蓝桥杯-02-python组考点与14届真题
蓝桥杯-02-python组考点与14届真题
|
7月前
|
Python
第十三届蓝桥杯B组python(试题A:排列字母)
第十三届蓝桥杯B组python(试题A:排列字母)
69 0
|
7月前
|
测试技术 Python
第十四届蓝桥杯第三期模拟赛 【python】(一)
第十四届蓝桥杯第三期模拟赛 【python】(一)
|
人工智能 Python
【蓝桥杯国赛真题笔记】Python(2)
【蓝桥杯国赛真题笔记】Python
264 0
【蓝桥杯国赛真题笔记】Python(2)
下一篇
DataWorks