向量数据库,能让AI再次起飞吗?

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 向量数据库,能让AI再次起飞吗?

9月7-8日,深圳国际会展中心18号馆

来了,来了,腾讯面向产业互联网领域规格最高、规模最大、覆盖最广的年度科技盛会 -——- 腾讯全球数字生态大会

9 7 日,我们将聚焦产业未来发展新趋势,针对云计算、大数据、人工智能、安全、SaaS 等核心数字化工具做关键进展发布,并联合生态伙伴推出最新行业场景解决方案。同时,携手全球权威商业杂志榜单,与中国最佳 CEO 探讨数实融合发展趋势,与中国 500 强企业解析产业焕新最佳实践。畅谈国产化、企业出海、行业大模型等应用实例,探讨如何构筑企业安全免疫力,以及如何通过 SaaS 产品组织协同缔造业务新增长等焦点议题。

由于本次大会的信息量太大,西红柿将聚焦向量数据库,为大家带来详细的介绍和评测。

一、什么是向量数据库?

向量数据库是一种专门用于存储和处理向量数据的数据库系统,它通过优化存储结构和查询算法,提供了高效的向量数据存储、相似度搜索、聚类和分类等功能。在图像、音频、文本等领域的应用中,向量数据库发挥着重要的作用。

向量数据库通常提供了丰富的查询接口和功能,如范围查询、k 近邻查询、相似性匹配等。同时,向量数据库还支持高并发和分布式部署,以应对大规模数据和高并发访问的需求。

向量数据库的工作流程包括以下步骤:

  • 1、向量数据的存储:向量数据通常是高维的数值型数据,如图像特征向量、文本词向量等;向量数据库使用基于向量的存储结构,以便快速查询和处理;
  • 2、向量索引:向量数据库使用 PQ、LSH 或 HNSW 等算法为向量编制索引,并将向量映射到数据结构,以便更快地进行搜索;
  • 3、向量查询:向量数据库将查询向量与数据库中的向量进行比较,从而找到最近邻的向量;
  • 4、查询结果的返回:向量数据库返回查询结果,通常包括与给定向量最相似的向量列表、向量之间的相似度得分等信息;该环节可以使用不同的相似性度量对最近邻重新排序。

二、腾讯云向量数据库 - 测试准备

准备工作概述:一台向量数据库 + 一个执行测试代码的客户端 + ann-benchamrk 官方的测试数据集和方法。

2.1 环境准备

ps.腾讯云向量数据库面向用户提供丰富的实例规格,可按需挑选。

  1. 操作系统选择: 版本建议使用‘TencentOS Server 3.1 (TK4)’, 此版本实测过程中安装 python3 相关的依赖 较顺利;
  2. 磁盘大小选择: 建议预留足够大的磁盘空间,200G 应该能满足实际测试需要,也可参考实际数据集的 大小创建;
  3. 内存大小选择: 因实际测试过程中,每一个进程都需要将被测试数据集全集加载进内存,可参考数据 集大小的 130% * 测试工具进程数 选择机器内存;

稍等几分钟,就建好啦,效果如下:

2.2 数据准备

2.1 上传测试工具及数据集到测试客户端

测试数据来源: ann-benchamrk 官方数据集测试工具可自动从外网官方站点下载。官网地址:https://ann-benchmarks.com/

2.2 安装测试工具依赖

软件依赖: python 版本大于 3.6.8, 使用建议的操作系统版本上的 python3 即可

2.2.1 安装操作系统依赖包

yum install python3-pillow-devel.x86_64

2.2.2 解决测试工具并安装 python 运行依赖

cd ann-benchmarks
pip3 install -r requirements.txt

2.2.3 需要的依赖包:

ansicolors==1.1.8
docker
h5py
matplotlib
numpy
pyyaml
psutil
scikit-learn
jinja2
pytest
dataclasses-json==0.5.7
dacite
urllib3
enum34
typing
tqdm
threadpool

三、性能测试

3.1 测试 128 维数据在 HNSW 索引下的单核查询性能

从测试数据集说明中,找到 ann-benchamrk 已存在的名为 sift-128-euclidean 的数据集正好是 128 维度,可使用该数据集做测试。该数据集命令以 euclidean 结尾,表示使用 L2 相似算法。

执行测试后,看看数据库的资源表现吧。

  • CPU 使用率接近 100%
  • 内存和磁盘使用率较低

请求方面:

  • 请求量 QPS(Count/s) 最大值: 1092.92 最小值: 0.00 平均值: 63.90
  • 请求成功率(%) 最大值: 100.00 最小值: 0.00 平均值: 6.39
  • 请求超时率(%) 最大值: 0.00 最小值: 0.00 平均值: 0.00
  • 请求异常率(%) 最大值: 0.00 最小值: 0.00 平均值: 0.00
  • 失败请求量 QPS(Count/s) 最大值: 0.00 最小值: 0.00 平均值: 0.00
  • 请求平均耗时(ms) 最大值: 0.70 最小值: 0.00 平均值: 0.04

网络方面:在西红柿下载测试结果时,造成了一个峰值的。

向量数据库的单核性能表现令人赞叹。它展现出出色的处理能力和高效的计算速度。无论是在数据存储、索引构建还是查询处理方面,向量数据库都能够快速进行并行计算,并在单个核心上实现卓越的性能。

四、小结

腾讯云向量数据库专注于处理大规模的向量数据,并采用了高效的索引和查询算法,能够快速地进行相似度搜索和高维向量计算。使用户能够轻松地进行复杂的数据分析和机器学习任务。

腾讯云向量数据库还具备出色的可扩展性和稳定性。它支持自动水平扩展,能够根据数据规模和用户需求进行弹性扩容,保证了数据库的高可用性和性能稳定性。同时,腾讯云向量数据库提供了友好的管理界面和灵活的API接口,使得用户可以方便地进行数据操作和管理。

除此之外,腾讯云向量数据库还注重数据安全和隐私保护。它采用了多层次的安全措施,包括数据加密、访问控制和防火墙等,保证了用户数据的安全性和隐私保护。

总之,腾讯云向量数据库以其高性能、可扩展性和数据安全性而备受推崇,为用户提供了强大的数据处理和分析能力,是一项令人印象深刻的云端数据库解决方案。

更多精彩,请关注腾讯全球数字生态大会吧。

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
1月前
|
存储 人工智能 前端开发
Qoder + ADB Supabase :5分钟GET超火AI手办生图APP
本文介绍如何利用Qoder、阿里云ADB Supabase和通义千问图像编辑模型,快速搭建AI手办生图Flutter应用。无需传统后端,实现从前端生成到数据存储、AI服务集成的全链路敏捷开发,展现Vibe Coding的高效实践。
Qoder + ADB Supabase :5分钟GET超火AI手办生图APP
|
2月前
|
人工智能 缓存 监控
使用LangChain4j构建Java AI智能体:让大模型学会使用工具
AI智能体是大模型技术的重要演进方向,它使模型能够主动使用工具、与环境交互,以完成复杂任务。本文详细介绍如何在Java应用中,借助LangChain4j框架构建一个具备工具使用能力的AI智能体。我们将创建一个能够进行数学计算和实时信息查询的智能体,涵盖工具定义、智能体组装、记忆管理以及Spring Boot集成等关键步骤,并展示如何通过简单的对话界面与智能体交互。
855 1
|
30天前
|
人工智能 运维 关系型数据库
云栖大会|AI时代的数据库变革升级与实践:Data+AI驱动企业智能新范式
2025云栖大会“AI时代的数据库变革”专场,阿里云瑶池联合B站、小鹏、NVIDIA等分享Data+AI融合实践,发布PolarDB湖库一体化、ApsaraDB Agent等创新成果,全面展现数据库在多模态、智能体、具身智能等场景的技术演进与落地。
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1257 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
4月前
|
存储 关系型数据库 数据库
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
本文通过一个 Agentic RAG 应用的完整构建流程,展示了如何借助 RDS Supabase 快速搭建具备知识处理与智能决策能力的 AI 应用,展示从数据准备到应用部署的全流程,相较于传统开发模式效率大幅提升。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
|
3月前
|
人工智能 自然语言处理 算法
提升LangChain开发效率:10个被忽视的高效组件,让AI应用性能翻倍
LangChain作为主流大语言模型应用框架,其高级组件常被忽视。本文详解10个高价值但低使用率的核心组件,如语义检索、多模板路由、智能查询转换等,结合技术原理与实践案例,助开发者构建更高效、智能、适应性强的AI系统,提升应用性能与业务价值。
294 0
|
2月前
|
人工智能 Java API
构建基于Java的AI智能体:使用LangChain4j与Spring AI实现RAG应用
当大模型需要处理私有、实时的数据时,检索增强生成(RAG)技术成为了核心解决方案。本文深入探讨如何在Java生态中构建具备RAG能力的AI智能体。我们将介绍新兴的Spring AI项目与成熟的LangChain4j框架,详细演示如何从零开始构建一个能够查询私有知识库的智能问答系统。内容涵盖文档加载与分块、向量数据库集成、语义检索以及与大模型的最终合成,并提供完整的代码实现,为Java开发者开启构建复杂AI智能体的大门。
1294 58
|
1月前
|
人工智能 运维 NoSQL
云栖大会|AI浪潮下的NoSQL演进:下一代数据库的破局之道
AI浪潮下的NoSQL演进:下一代数据库的破局之道