从零开始,探究Redis分布式锁底层原理!

简介: 从零开始,探究Redis分布式锁底层原理!


🍊 从零开始,探究Redis分布式锁底层原理!

Redis是一个开源的NoSQL数据库,提供了分布式锁的实现,分布式锁是一种在分布式环境下保持数据一致性的方法。在多线程或多进程的环境下,多个线程或进程对共享资源进行读写操作,为保证数据的正确性和一致性,需要使用分布式锁来控制并发访问。在分布式环境下,Redis分布式锁是非常实用的一种方案,可以保证应用程序的高可用性、高可靠性和高并发性。

在Redis中,使用setnx命令来实现分布式锁,多线程或多进程可以通过setnx命令来尝试获取锁,只有获取到锁的进程才有执行权利。在实际应用中,对于Redis分布式锁的应用,除了普通的使用场景外,还有许多异常情况需要考虑和处理。

🎉 1. Redis服务挂掉了,抛出异常了,锁不会被释放掉,新的请求无法进来,出现死锁问题

这种情况最容易出现的情况是Redis服务突然挂掉,导致锁无法被释放,后续新的请求也无法获取锁,从而导致死锁问题。为了避免这种情况的出现,需要在加锁的代码中,使用try finally语句块来确保锁最终能够被释放。即使Redis服务挂掉了,也可以保证锁能够最终被释放。

String lockKey = "lockKey";
String threadId = Thread.currentThread().getId();
boolean lockSuccess = jedis.setnx(lockKey, threadId) == 1;
try {
    if (lockSuccess) {
        // 获取到锁,执行任务
        doTask();
    }
} finally {
    // 最终释放锁
    if (lockSuccess) {
        jedis.del(lockKey);
    }
}

在加锁的代码中使用try finally语句块,即使Redis服务挂掉了,也可以保证锁最终能够被释放。

🎉 2. 服务器果宕机了,导致锁不能被释放的现象

在分布式环境下,常常会遇到服务器宕机的情况,如果当前持有锁的服务器宕机了,那么其他服务器就无法获取锁,就会出现锁不能被释放的现象。为了避免这种情况的出现,我们可以在加锁的时候设置锁的超时时间,当锁超时时,就会自动释放锁。

String lockKey = "lockKey";
String threadId = Thread.currentThread().getId();
boolean lockSuccess = jedis.setnx(lockKey, threadId) == 1;
try {
    if (lockSuccess) {
        // 获取到锁,执行任务
        doTask();
    }
} finally {
    // 释放锁
    if (lockSuccess) {
        jedis.del(lockKey);
    }
    // 设置锁的超时时间
    if (jedis.ttl(lockKey) == -1) {
        jedis.expire(lockKey, 30);
    }
}

在加锁的代码中,使用jedis.ttl(lockKey)来获取锁的过期时间,如果锁已经过期了(返回-1),那么就使用jedis.expire(lockKey, 30)来设置锁的超时时间为30秒。这样可以自动释放锁,避免出现锁不能被释放的现象。

🎉 3. 锁的过期时间比业务执行时间短,会存在多个线程拥有同一把锁的现象

如果锁的过期时间比业务执行时间短,会存在多个线程拥有同一把锁的现象,例如有一个线程执行需要15秒,过期时间只有10秒,当执行到10秒时第二个线程进来拿到这把锁,会出现多个线程拿到同一把锁执行。为了避免这种情况的出现,可以使用续期超时时间的方法来解决。

String lockKey = "lockKey";
String threadId = Thread.currentThread().getId();
boolean lockSuccess = jedis.setnx(lockKey, threadId) == 1;
try {
    if (lockSuccess) {
        // 获取到锁,执行任务
        doTask();
    }
} finally {
    // 释放锁
    if (lockSuccess) {
        jedis.del(lockKey);
    }
    // 续期超时时间
    if (jedis.ttl(lockKey) > 10) {
        jedis.expire(lockKey, 10);
    }
}

在加锁的代码中,使用jedis.ttl(lockKey)来获取锁的剩余时间,如果锁的剩余时间大于10秒,就使用jedis.expire(lockKey, 10)来设置锁的超时时间为10秒。这样可以续期超时时间,避免出现多个线程拥有同一把锁的现象。

🎉 4. 锁的过期时间比业务执行时间短,锁永久失效

如果锁的过期时间比业务执行时间短,且程序执行的时间超过了设置的过期时间,就会导致其他线程删除了自己的锁,出现锁永久失效的情况。为了避免这种情况的出现,需要给每个线程都设置一个唯一标识,避免出现程序执行的时间超过设置的过期时间,导致其他线程删除了自己的锁,只允许自己删除自己线程的锁。

String lockKey = "lockKey";
String threadId = Thread.currentThread().getId();
String uniqueId = UUID.randomUUID().toString();
boolean lockSuccess = jedis.setnx(lockKey, uniqueId) == 1;
try {
    if (lockSuccess) {
        // 获取到锁,执行任务
        doTask();
    }
} finally {
    // 释放锁
    if (lockSuccess && uniqueId.equals(jedis.get(lockKey))) {
        jedis.del(lockKey);
    }
}

在加锁的代码中,使用UUID.randomUUID().toString()来生成每个线程的唯一标识,这样就保证了每个线程都有一个唯一的标识。在释放锁的时候,使用jedis.get(lockKey)来获取当前锁的值,如果当前线程的唯一标识和锁的值相同,就释放锁。这样就可以避免出现锁永久失效的情况。

总之,在使用Redis分布式锁的时候,需要注意一些异常情况,并且给每个线程都设置一个唯一标识,保证锁的正确使用。使用try finally语句块来确保锁最终能够被释放,在加锁的时候设置锁的超时时间,避免出现锁不能被释放的现象。在锁的过期时间比业务执行时间短的情况下,可以使用续期超时时间的方法来解决。最后,使用Redis分布式锁可以保证数据的正确性和一致性,提高了应用程序的可用性、可靠性和并发性。


相关文章
|
存储 缓存 NoSQL
Redis 服务器全方位介绍:从入门到核心原理
Redis是一款高性能内存键值数据库,支持字符串、哈希、列表等多种数据结构,广泛用于缓存、会话存储、排行榜及消息队列。其单线程事件循环架构保障高并发与低延迟,结合RDB和AOF持久化机制兼顾性能与数据安全。通过主从复制、哨兵及集群模式实现高可用与横向扩展,适用于现代应用的多样化场景。合理配置与优化可显著提升系统性能与稳定性。
652 0
|
6月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
470 2
|
6月前
|
存储 缓存 NoSQL
【📕分布式锁通关指南 12】源码剖析redisson如何利用Redis数据结构实现Semaphore和CountDownLatch
本文解析 Redisson 如何通过 Redis 实现分布式信号量(RSemaphore)与倒数闩(RCountDownLatch),利用 Lua 脚本与原子操作保障分布式环境下的同步控制,帮助开发者更好地理解其原理与应用。
420 6
|
5月前
|
NoSQL Java 调度
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
分布式锁是分布式系统中用于同步多节点访问共享资源的机制,防止并发操作带来的冲突。本文介绍了基于Spring Boot和Redis实现分布式锁的技术方案,涵盖锁的获取与释放、Redis配置、服务调度及多实例运行等内容,通过Docker Compose搭建环境,验证了锁的有效性与互斥特性。
458 0
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
|
5月前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
5月前
|
存储 缓存 监控
Redis分区的核心原理与应用实践
Redis分区通过将数据分散存储于多个节点,提升系统处理高并发与大规模数据的能力。本文详解分区原理、策略及应用实践,涵盖哈希、范围、一致性哈希等分片方式,分析其适用场景与性能优势,并探讨电商秒杀、物联网等典型用例,为构建高性能、可扩展的Redis集群提供参考。
309 0
|
7月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
11月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
1223 0
分布式爬虫框架Scrapy-Redis实战指南
|
NoSQL Java 中间件
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
本文介绍了从单机锁到分布式锁的演变,重点探讨了使用Redis实现分布式锁的方法。分布式锁用于控制分布式系统中多个实例对共享资源的同步访问,需满足互斥性、可重入性、锁超时防死锁和锁释放正确防误删等特性。文章通过具体示例展示了如何利用Redis的`setnx`命令实现加锁,并分析了简化版分布式锁存在的问题,如锁超时和误删。为了解决这些问题,文中提出了设置锁过期时间和在解锁前验证持有锁的线程身份的优化方案。最后指出,尽管当前设计已解决部分问题,但仍存在进一步优化的空间,将在后续章节继续探讨。
1484 131
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
|
9月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
579 67