SVM不同核函数区别与选择

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 支持向量机(Support Vector Machine,SVM)是一种常用的监督学习算法,它可以将数据从低维空间映射到高维空间,以便更好地进行分类或回归分析。SVM的关键思想是找到一个能够最大化分类边界(或称为超平面)的决策边界,这个边界可以最好地区分不同类别的数据点。

在SVM中,我们使用内核函数(kernel function)来实现数据从低维到高维的映射。常用的内核函数包括线性内核(linear kernel)、多项式内核(polynomial kernel)和径向基函数内核(radial basis function kernel,RBF)。这些内核函数可以帮助SVM处理非线性可分的数据。

为了说明不同内核函数的效果,让我们以红酒数据为例进行说明。我们使用相同的红酒数据,在使用四种不同的内核函数下绘制数据的图形,以观察它们的区别。

首先,我们需要加载红酒数据,并使用SVM算法和不同的内核函数进行建模和预测。然后,我们可以将预测结果可视化,以便比较不同内核函数的分类效果。通过这种方式,我们可以直观地理解不同内核函数在SVM中的作用,以及它们对数据的影响。

在具体编程实现时,我们可以使用Python的相关库(如scikit-learn)来实现SVM算法,并结合matplotlib等库来进行数据可视化。通过这样的实例,我们可以更好地理解SVM的内核函数以及它们在实际数据上的应用效果。

#导入红酒数据库
from sklearn.datasets import load_wine
#定义函数来绘制画图
def make_meshgrid(x,y,h=.02):
    x_min,x_max=x.min()-1,x.max()+1
    y_min,y_max=y.min()-1,y.max()+1
    xx,yy=np.meshgrid(np.arange(x_min,x_max,h),np.arange(y_min,y_max,h))
    return xx,yy
#定义一个绘制等高线的函数
def plot_contours(ax,clf,xx,yy,**params):
    z=clf.predict(np.c_[xx.ravel(),yy.ravel()])
    z=z.reshape(xx.shape)
    out=ax.contourf(xx,yy,z,**params)
#使用酒的数据
wine=load_wine()
#选取数据中的前两个数据
X=wine.data[:,:2]
y=wine.target
C=1.0#SVM的正规化参数
models=(svm.SVC(kernel='linear',C=C),#线性可调
svm.LinearSVC(C=C),#线性不可调
svm.SVC(kernel='rbf',gamma=0.7,C=C),
svm.SVC(kernel='poly',degree=3,C=C))
models=(clf.fit(X,y) for clf in models)
#设定图片的题目
titles=('SVC with linear kernel','linearSVC (linear kernel)','SVC with RBF kernel','SVC with polymomial(degree 3)kernel')
#设定一个子图形的个数和排列方式进行画图
fig,sub=plt.subplots(2,2)
plt.subplots_adjust(wspace=0.4,hspace=0.4)
#使用前面的函数进行画图
X0,X1=X[:,0],X[:,1]
xx,yy=make_meshgrid(X0,X1)
for clf,title,ax in zip(models,titles,sub.flatten()):
    plot_contours(ax,clf,xx,yy,cmap=plt.cm.plasma,alpha=0.8)
    ax.scatter(X0,X1,c=y,cmap=plt.cm.plasma,s=20,edgecolors='k')
    ax.set_xlim(xx.min(),xx.max())
    ax.set_ylim(yy.min(),yy.max())
    ax.set_xlabel('Feature 0')
    ax.set_ylabel('Feature 1')
    ax.set_xticks(())
    ax.set_yticks(())
    ax.set_title(title)
#将图形显示出来
plt.show()

截屏2023-12-27 下午8.48.54.png

这段代码主要使用了Scikit-learn库中的SVM支持向量机模型,对红酒数据集进行分类,并通过可视化的方式展示其分类效果。具体步骤如下:

导入红酒数据库:使用load_wine函数加载红酒数据集,并将数据存储在变量wine中。

选择数据特征:从红酒数据中选择了前两个特征,并将其存储在变量X中,将目标变量存储在变量y中。

定义SVM模型:定义了四个SVM模型,分别使用不同的内核函数(线性、线性、高斯径向基函数和多项式)来进行分类。

训练并绘制图像:对四个SVM模型进行训练,使用make_meshgrid函数生成网格点,利用plot_contours函数绘制等高线图,并将数据点可视化在图上,最后将图形显示出来。

总体而言,该代码主要是为了展示支持向量机算法在分类问题中的应用,以及不同内核函数的效果和优缺点。

相关文章
|
前端开发 关系型数据库 MySQL
基于python+mysql的宠物领养网站系统
基于python+mysql的宠物领养网站系统
274 2
|
Web App开发 数据采集 JavaScript
有JavaScript动态加载的内容如何抓取
有JavaScript动态加载的内容如何抓取
|
机器学习/深度学习 人工智能 自然语言处理
未来深度学习技术的发展趋势与挑战
随着人工智能的快速发展,深度学习作为其核心技术之一,正面临着多样化和复杂化的挑战。本文探讨了未来深度学习技术的发展趋势,分析了当前面临的技术挑战,并提出了应对策略。 【7月更文挑战第10天】
474 0
|
存储 API PHP
兰空图床Typecho上传插件LskyPluginTypechoV2安装及使用教程
【10月更文挑战第1天】本插件基于isYangs、泽泽站长、兔子君、冷寂等前辈的作品,适用于Typecho。教程包括获取API Token、设置插件及上传图片等步骤。
|
机器学习/深度学习
【阿旭机器学习实战】【21】通过SVM分类与回归实战案例,对比支持向量机(SVM)3种SVM不同核函数
【阿旭机器学习实战】【21】通过SVM分类与回归实战案例,对比支持向量机(SVM)3种SVM不同核函数
【阿旭机器学习实战】【21】通过SVM分类与回归实战案例,对比支持向量机(SVM)3种SVM不同核函数
|
图形学 开发者 异构计算
《黑神话:悟空》中的性能优化与调试技术
【8月更文第26天】在游戏开发过程中,性能优化和调试是保证游戏流畅运行的关键环节。《黑神话:悟空》作为一款追求高质量画面和流畅体验的游戏,其背后的性能优化与调试技术尤为重要。本文将详细介绍游戏开发过程中所采用的各种性能优化技术和调试手段。
313 3
|
弹性计算 关系型数据库 MySQL
阿里云数据库服务器价格表,数据库创建、连接和使用教程
阿里云数据库使用流程包括购买和管理。选择所需数据库类型如MySQL,完成实名认证后购买,配置CPU、内存和存储。确保数据库地域与ECS相同以允许内网连接。创建数据库和账号,设置权限。通过DMS登录数据库,使用账号密码连接。同一VPC内的ECS需添加至白名单以进行内网通信。参考官方文档进行详细操作。
529 3
|
SQL Web App开发 安全
Discuz历史漏洞分析(一)
Discuz是非常受欢迎的论坛型CMS,但是近年来DZ也爆出了很多经典漏洞,以下分析了几个不同类型的DZ历史漏洞(SQL注入、XSS、任意文件删除、弱加密算法、任意代码执行、HTTP HOST攻击等),提高安全人员的安全意识。
Discuz历史漏洞分析(一)