m基于深度学习的OFDM通信系统频偏估计算法matlab仿真

简介: m基于深度学习的OFDM通信系统频偏估计算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

训练曲线:

ed3b76e7fce890c1836ff309c2b13595_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

误码率曲线:

c39e89cf53bba62e378c9f7dd2aea2c2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
正交频分复用(OFDM)是一种高效的无线通信技术,广泛应用于各种无线通信系统。然而,OFDM系统对频率偏移非常敏感,频偏会导致子载波间的正交性丧失,进而产生严重的性能下降。传统的频偏估计方法通常基于导频或者循环前缀,但在低信噪比或者多径环境下性能较差。近年来,深度学习(DL)在无线通信领域的应用受到了广泛关注。

2.1 OFDM系统模型
OFDM系统的基本原理是将高速数据流通过串并转换分配到多个低速子载波上进行传输。假设系统有N个子载波,第k个子载波上的符号为Xk,经过逆傅里叶变换(IFFT)后得到时域信号xk。为了对抗多径效应,通常在符号前添加循环前缀(CP)。接收端去除CP后,进行傅里叶变换(FFT)恢复出频域信号Yk。在理想情况下,Yk应该等于Xk乘以信道响应Hk,但由于频率偏移、噪声等因素的影响,实际接收到的信号会有偏差。

2.2 基于DNN的频偏估计方法
本文提出的基于DNN的频偏估计方法的基本思想是利用神经网络来学习从接收信号中提取频偏信息。具体来说,我们将接收到的时域信号xk作为神经网络的输入,输出为估计的频偏值。神经网络的结构可以根据具体的应用场景进行优化设计。

faf9e3798393174afe0139c41722dd31_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

假设OFDM符号周期为Ts,子载波间隔为Δf = 1/Ts。接收端收到的时域信号可以表示为:

r(t) = e^(j2πΔft) * s(t - τ) + n(t)

  其中s(t)是发送的OFDM符号,τ是时间偏移,n(t)是加性高斯白噪声(AWGN)。经过FFT后,第k个子载波上的接收信号可以表示为:

Rk = e^(j2πkΔfτ) Sk Hk + Nk

    其中Sk是发送的第k个子载波上的符号,Hk是第k个子载波上的信道响应,Nk是第k个子载波上的噪声。从上述公式可以看出,频偏Δf和时间偏移τ都会导致相位旋转,进而影响接收信号的准确性。因此,频偏估计是OFDM系统中的一个关键问题。

    为了从接收信号中学习频偏信息,我们设计了一个深度神经网络模型。输入层接收时域信号xk,经过多个隐藏层的处理后,输出层输出估计的频偏值。隐藏层的激活函数可以选择ReLU、sigmoid等常用的函数。为了优化模型的性能,可以使用梯度下降等优化算法进行训练。此外,还可以使用正则化、dropout等技术来防止过拟合。

3.MATLAB核心程序
```for n = 1:length(EbN0dB)
n
% 获取当前的Eb/N0值
snr = EbN0dB(n);
% 初始化比特错误数量和计时器
berrors1 = 0;
berrors2 = 0;
berrors3 = 0;
Fberrors2 = 0;
Fberrors3 = 0;
tic;
for mc = 1:MC% 进行Monte Carlo模拟

    load dl4.mat
    %调用深度学习模型进行频偏估计

...........................................

    yr02   = (exp(-1*1i*2*pi*offset*(0:length(yr0)-1)/nFFT)).*yr0;
    % 接收端处理  
    yr2 = yr02(nCP+1:end);% 去循环前缀 
    yr2 = (nDSC/sqrt(nFFT))*fftshift(fft(yr2,nFFT));% FFT变换  
    yr2 = yr2 > 0; % 硬判决解调 
    berrors2 = berrors2 + length(find((yr2-x)~=0)); % 计算比特错误数量  
end
toc;

BER1(n) = berrors1/(nFFTMC);
BER2(n) = berrors2/(nFFT
MC);
end

figure;
semilogy(EbN0dB,BER1,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
semilogy(EbN0dB,BER2,'-rs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.5,0.6,0.8]);
hold on;
hold on;

grid on;
xlabel('Eb/N0');
ylabel('BER1');
legend('没频偏估计','基于深度学习的频偏估计');
```

相关文章
|
2月前
|
数据可视化 数据安全/隐私保护 C++
开关磁阻电机(SRM)系统的matlab性能仿真与分析
本课题基于MATLAB 2022a对开关磁阻电机(SRM)系统进行性能仿真与分析,涵盖平均转矩、转矩脉动、自感与互感、功率及效率等关键参数的对比研究。通过程序仿真,生成了相电流、转子角度、机械转速等多维度数据关系图。SRM以其无刷、无永磁体的特点,具备高可靠性和低成本优势,其工作原理基于磁阻最小原则,通过控制定子绕组电流实现连续旋转运动。核心程序实现了不同电流下平均转矩的计算与可视化,为SRM优化设计提供了理论依据。
|
4月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
332 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
3月前
|
算法 数据安全/隐私保护
基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真
本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。
152 65
|
2月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
2月前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
2月前
|
算法 数据安全/隐私保护
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真
本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。 具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。
|
3月前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
4月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
164 18
|
9月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
356 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
9月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
219 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章