Python提取JSON文件中的指定数据并保存在CSV或Excel表格文件内

简介: Python提取JSON文件中的指定数据并保存在CSV或Excel表格文件内

  本文介绍基于Python语言,读取JSON格式的数据,提取其中的指定内容,并将提取到的数据保存到.csv格式或.xlsx格式的表格文件中的方法。

  JSON格式的数据在数据信息交换过程中经常使用,但是相对而言并不直观;因此,有时我们希望将JSON格式的数据转换为Excel表格文件数据;这里就介绍一下基于Python语言,将JSON数据转换为.csv格式与.xlsx格式数据的方法。

  首先,来看一下我们的需求。我们现在基于Postman软件,获得了某一个网站中,以JSON格式记录的大量数据,其中部分数据如下图所示(这里是大量数据样本中的1条样本)。这里关于Postman获取网站数据的方法,大家如果有需要,可以参考文章Postman软件基本用法:浏览器复制请求信息并导入到软件从而测试、发送请求https://blog.csdn.net/zhebushibiaoshifu/article/details/132383361)。

  我们现在希望实现的是,将上述JSON数据中的文字部分(也就是有价值的信息部分)提取出来,并保存在一个Excel表格文件中;其中,不同的就是不同的信息属性,不同的就是不同的样本

  明确了需求,我们就可以开始撰写代码。这里需要注意,在本文代码中需要用到Pythonjson库,关于这一个库的配置,大家可以参考文章Mac系统Anaconda环境配置Python的json库https://blog.csdn.net/zhebushibiaoshifu/article/details/132565661)。

  首先,介绍将JSON格式数据转换为.csv文件数据的代码,具体如下。

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 29 10:22:23 2023
@author: fkxxgis
"""
import json
import csv
with open('/Users/didi/Documents/response.json', 'r') as f:
    data = json.load(f)
with open('/Users/didi/Documents/Data_All.csv', 'w', newline='', encoding='utf-8') as csvfile:
    csvwriter = csv.writer(csvfile)
    header = ["xkzh", "qymc", "gmpZsh", "cym", "shren", "shrq"]
    csvwriter.writerow(header)
    for row in data['rows']:
        xkzh = row['xkzh']
        qymc = row['qymc']
        gmpZsh = row['gmpZsh']
        cym = row['cym']
        shren = row['shren']
        shrq = row['shrq']
        csvwriter.writerow([xkzh, qymc, gmpZsh, cym, shren, shrq])

  首先需要说明,上述代码在执行后,我打开新建的.csv格式文件,会出现中文字符乱码的情况,如下图所示。

  但是用本文接下来的导出为.xlsx格式文件的代码就不会有这个问题,所以我当时没有进一步研究乱码出现的原因,就直接用了后续的代码了。如果大家感兴趣,可以对上述代码加以进一步研究。

  上述代码的具体含义如下。首先,我们通过with open('/Users/didi/Documents/response.json', 'r') as f:,打开名为response.json的文件(也就是存储了我们JSON格式数据的文件),并将其赋值给变量f;这里的'r'表示以只读模式打开文件。随后,代码data = json.load(f)使用json.load()函数加载JSON文件中的数据,并将其存储在变量data中。

  接下来,打开名为Data_All.csv的文件,并将其赋值给变量csvfile'w'表示以写入模式打开文件。newline=''encoding='utf-8'用于设置写入.csv文件时的换行和编码方式。随后,csvwriter = csv.writer(csvfile)表示创建一个.csv写入器,将数据写入csvfile文件。

  其次,我们即可定义.csv文件的表头(列名),以列表形式存储在header变量中;随后,通过csvwriter.writerow(header)将表头写入.csv文件。

  紧接着,对于data中的每一行数据,执行以下操作——xkzh = row['xkzh']就表示从当前行的字典中提取键为xkzh的值,并将其赋值给变量xkzh;接下来的其他几行也是这个意思。最后,我们将提取的数据以列表的形式写入.csv文件的一行。

  接下来,我们介绍将JSON格式数据转换为.xlsx文件数据的代码,具体如下。

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 29 10:42:26 2023
@author: fkxxgis
"""
import json
from openpyxl import Workbook
with open('/Users/didi/Documents/Veterinary/response_2.json', 'r') as f:
    data = json.load(f)
wb = Workbook()
ws = wb.active
header = ["qymc", "tym", "gg", "spm", "pzwh", "zxbz", "pzrq", "yxq", "sxyy", "bgqk"]
ws.append(header)
for row in data['rows']:
    qymc = row['qymc']
    tym = row['tym']
    gg = row['gg']
    spm = row['spm']
    pzwh = row['pzwh']
    zxbz = row['zxbz']
    pzrq = row['pzrq']
    yxq = row['yxq']
    sxyy = row['sxyy']
    bgqk = row['bgqk']
    ws.append([qymc, tym, gg, spm, pzwh, zxbz, pzrq, yxq, sxyy, bgqk])
wb.save('/Users/didi/Documents/Veterinary/Result_2.xlsx')

  上述代码的含义也比较简单。

  首先,我们打开名为response_2.json的文件,并将其赋值给变量f'r'表示以只读模式打开文件。随后的data = json.load(f)表示使用json.load()函数加载JSON文件中的数据,并将其存储在变量data中。

  接下来,创建一个新的Excel工作簿,将其赋值给变量wb;随后,获取工作簿的活动工作表,并将其赋值给变量ws

  紧接着,我们定义Excel文件的表头(列名),以列表形式存储在header变量中,并将表头写入Excel文件的第一行。随后,对于data中的每一行数据(假设每一行都是一个字典),执行以下操作——从当前行的字典中提取特定字段的值,并将它们分别赋值给对应的变量。接下来,我们将提取的数据以列表的形式写入Excel文件的一行。

  最后,即可将Excel工作簿保存为名为Result_2.xlsx的文件。

  运行上述代码,我们即可在Result_2.xlsx文件中看到提取到的数据,其中每一行就是一个样本,每一列表示一种属性,且没有出现乱码的情况。如下图所示。

  至此,大功告成。

欢迎关注:疯狂学习GIS

相关文章
|
15天前
|
Java API Apache
Java编程如何读取Word文档里的Excel表格,并在保存文本内容时保留表格的样式?
【10月更文挑战第29天】Java编程如何读取Word文档里的Excel表格,并在保存文本内容时保留表格的样式?
71 5
|
26天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
10天前
|
SQL 数据可视化 数据挖掘
想让Excel表格设计更美观?试试这几款好用工具!
Excel表格设计在项目管理和数据分析中至关重要。本文推荐四款辅助工具:板栗看板、Excel自动图表助手、Think-Cell Chart 和 Power BI,分别在任务管理、图表生成、数据可视化等方面表现突出,帮助你设计出更专业、美观的表格。
26 2
|
11天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
20 1
|
12天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
12天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
22天前
|
JavaScript 前端开发 数据处理
Vue导出el-table表格为Excel文件的两种方式
Vue导出el-table表格为Excel文件的两种方式
|
24天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
52 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
1月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
46 2
|
11天前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
20 0