SLS 智能运维 AI 基础模型创新

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: SLS 全新发布运维场景基础模型,覆盖 Log、Metric、Trace 等可观测数据场景,模型提供开箱即用的异常检测、自动标注、分类和根因分析等能力;根因分析算法千级异常请求秒级定位,生产中准确率达95%;同时支持人工辅助微调,提供人工标注、结果打标修正,模型根据人工反馈自动微调,提升场景准确率。

AIOps 为运维工作带来革命式变革

随着云计算技术不断升级,承载业务的 IT 基础设施规模扩大,各个应用之间的链路关系变得越来越复杂,每时每刻都在产生海量级的日志。对日志数据的采集、存储与分析处理方式,是衡量企业系统数字化程度的重要标志。传统的 IT 运维方案也会面临非常大的挑战对于 DevOps 来说,需要花费数小时进行查找、对比和分析,以解决一个问题。这可能涉及到查看各种日志、监控数据和其他相关信息,以找出问题的根源。而对于 SecOps 来说,需要在海量的数据中进行深度分析,意味着他们需要从数百 TB 的数据中,从异常中快速挖掘根本原因,这些过程都是非常耗时且繁琐的,可能需要大量的人力和资源投入。


传统的 AIOps 技术如异常检测、根因定位等主要有以下两个问题

  • AIOps 算法涉及到很多阈值、规则的配置,在不同业务场景这些配置项都需要反复测试选择。因此算法的维护成本比较高,很难随着业务场景的变化而演进
  • AIOps 模型的构建一般使用私域数据,往往存在数据数量较少、质量较差的问题。这导致了模型的泛化性、迁移能力较差,在不同的业务场景往往需要重新构建


针对以上痛点,SLS 推出智能运维通用模型能力。我们分别构建了用于对 Log、Trace、Metric 这三类可观测数据进行分析的基础模型,提供开箱即用的异常检测算法、根因分析和自动打标等能力。支持秒级在数千请求内定位到根因,在生产中准确率达 95%以上。对于不同的数据类型,我们选择了不同的任务对模型进行预训练:

  • Metric 基础模型:可准备识别时序异常检测、时序预测、形态检测等,辅助做好更加智能的巡检
  • Log 基础模型:针对日志场景,提供丰富的 LogNER 的能力,辅助抽取带有语义信息的日志模板
  • Trace 基础模型:支持 OT 协议的 Trace 数据的高延时诊断


特定领域的基础模型,开箱即用,省略了复杂的部署流程,一键触达,大大降低客户对日志服务基础能力的使用门槛。客户无需在特定的场景中进行模型微调,直接通过日志服务提供的通用基础模型就可以达到不错的效果。

SLS 发布智能运维场景的基础模型

近期 SLS 发布智能运维基础模型,覆盖 Log、Trace、Metric 等可观测数据场景,支持指标的异常检测、文本的分词标注、Trace请求的高延时分析。模型提供开箱即用的异常检测、自动标注、分类和根因分析等能力。支持秒级在数千请求内定位到根因,在生产中准确率达 95%以上


此外,SLS 提供人工辅助微调。在日志服务平台上,原生支持对 Log、Metric、Trace 的标注反馈能力,让客户在使用的过程中可以快速进行标注、结果打标修正,沉淀符合特定场景的数据集。通过平台的标注能力,让客户从零开始积累高质量的运维数据标签,为未来的根因诊断模型的训练提供了无限可能。


在未来,客户可以针对自己标注的数据在特定领域的模型上进行微调,并行快速部署,创建私有的模型服务。支持自动标注人工辅助微调,支持人工标注结果打标修正,模型根据人工反馈自动微调,提升场景准确率。

AI 基础模型 - Metric 模型的介绍

Metric 基础模型收集海量真实指标数据,尝试语言模型在指标数据上的迁移能力,具备开箱即用的指标异常检测能力。Metric 基础模型核心能力如下:

  • 针对 AIOps 领域数据多样:涉及了日志场景中的 20+ 类别的数据,涉及其中核心的 KPI 指标数量达到 15W+,指标实体数量达到 3W+,收集近 90 天的观测数据。
  • 附带元数据的特征编码:时序数据的划分需要动态的适配数据的形态,考虑时序数据中的时间戳特性
  • 下游任务拆解,包括 filling Blanks,fragment classfication,short term predication。

AI 基础模型-Metric 基础模型的演示

点击 智能运维基础模型 Demo 了解更多详情,作者:刘进步 阿里云高级开发工程师

https://developer.aliyun.com/live/253663?spm=a2c6h.27925324.detail.21.489031886qWWf7


AI 基础模型-Log 模型的介绍

Log 基础模型收集海量日志数据,提升语言模型在日志数据上的迁移能力,帮助运维人员更好的理解非结构化数据。其核心能力如下:

  • 针对 AIOps 领域数据多样:包含 200+ 的系统层和应用层日志,涵盖 100W+ 的日志
  • 运维场景的日志理解: 定义了日志领域场景的 16 类实体,自动提示实体信息

AI 基础模型-Log 基础模型的演示

点击 智能运维基础模型 Demo 了解更多详情,作者:刘进步 阿里云高级开发工程师

https://developer.aliyun.com/live/253664?spm=a2c6h.24874632.expert-profile.30.6e1c667bZuoq2F


AI 基础模型- Trace 基础模型的介绍

Trace 基础模型开箱即用,仅需要小部分 Meta 数据,无需进行大规模的预训练,能较好的适配多种微服务系统。

其核心能力如下:

  • 学习大量的微服务系统:使用阿里云内部微服务系统的真实数据,开发整套微服务系统生成的系统,通过混沌工程进行故障输入,获取真实的标签数据
  • 将图和指标联合建模:探索使用多源异构数据进行联合建模,解决图模型的泛化问题设计无监督任务,利用反事实方法生成标签

AI 基础模型-Trace 基础模型的演示

点击 智能运维基础模型 Demo 了解更多详情,作者:刘进步 阿里云高级开发工程师

https://developer.aliyun.com/live/253662?spm=a2c6h.27925324.detail.29.48903188vi5tKx


Trace RCA 场景示例:智能异常分析检测与根因分析

以游戏用户为例,介绍智能异常分析检测与根因分析的场景。游戏用户在游戏服务系统中调用和依赖关系复杂、任何阶段出问题都可能导致游戏操作失败或卡顿,影响玩家用户体验。


针对此类问题,我们提出了一种解决方案。该方案利用服务中的 Trace 数据自动生成拓扑图,并围绕高延时分析、高错误率分析、系统热点和瓶颈等方面进行分析和诊断,以缩短问题处理时间并优化系统延时。


通过自动生成的拓扑图,我们可以快速定位海量 Trace 数据中的异常根因和性能瓶颈,无需人工干预。这种方法可以提高大规模分布式系统的异常定位效率,并实现数千请求每秒级别的根因定位。在生产环境中,该方案的准确率可达到 95%。


Trace 根因分析主要围绕三个场景:

  1. 错误&高延时 Trace 根因分析:探测导致 Trace 高延时或错误的服务,关联 Log/Trace/Metric,自动检测根因
  2. 服务性能瓶颈检测:预测微服务系统的性能瓶颈
  3. Trace 聚类:将 Trace 聚合,找到 Trace 的 Pattern,快速找到相同错误类型的报错


以下截图显示 Trace RCA 自定义仪表盘:


SLS Mall 共有 12 个服务,45 个入口接口,在选择的时间段中,共产生了 1641195条Trace,其中请求平均延迟 21288.11ms

15:23 共有 1 个入口服务产生 2880 条慢 Trace 其中入口服务 Front-end 的 POST/jordrg 发现次数最多共出现 2880 次占100.0%

在根因分析结果中,主机 pay-ment-5b7dBd684b-zjtzv 出现比例最高,其中共出现 2892 次占 34.0%

在根因分析结果中,服务 payment 出现比例最高,其中共出现 2892 次占 99.0%

在根因分析结果中,方法 POST/payment-tAuth 出现比例最高,其中共出现 2892 次占 99.0%

未来方向探讨 

阿里云日志服务 SLS 致力于打造高效、可观测的运维解决方案,凭借其多年的运维经验以及大语言模型的支持,不断提升其在此领域的竞争力。在未来,SLS 智能运维基础模型的能力会持续优化。


SFT 与反馈相结合的 AI 系统是一种强大的机制,可以帮助提升模型的效果。在获得用户授权后,通过持续收集和分析用户反馈数据来不断优化基础 AI 模型,并为用户提供定制化服务,允许他们使用自己的业务数据和标签对模型进行微调,从而创建出更贴合其特定需求的专属模型。


通过 AI Agents 进一步实现运维场景的效率优化。需要深入探索和挖掘在智能运维领域中,适合利用 AI Agents 自动化、智能化提效的场景。探索 AI Agent 在多场景中的统一表示。探索基于 AI Agents 进行自主编程和自主执行的框架设计。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
1天前
|
人工智能 移动开发 前端开发
WeaveFox:蚂蚁集团推出 AI 前端智能研发平台,能够根据设计图直接生成源代码,支持多种客户端和技术栈
蚂蚁团队推出的AI前端研发平台WeaveFox,能够根据设计图直接生成前端源代码,支持多种应用类型和技术栈,提升开发效率和质量。本文将详细介绍WeaveFox的功能、技术原理及应用场景。
96 66
WeaveFox:蚂蚁集团推出 AI 前端智能研发平台,能够根据设计图直接生成源代码,支持多种客户端和技术栈
|
11天前
|
机器学习/深度学习 人工智能 UED
OOTDiffusion:开源AI虚拟试衣工具,智能适配性别和体型自动调整衣物
OOTDiffusion是一款开源的AI虚拟试衣工具,能够智能适配不同性别和体型,自动调整衣物尺寸和形状,生成自然贴合的试穿效果。该工具支持半身和全身试穿模式,操作简单,适合服装电商、时尚行业从业者及AI试穿技术爱好者使用。
96 27
OOTDiffusion:开源AI虚拟试衣工具,智能适配性别和体型自动调整衣物
|
1天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
30 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
11天前
|
机器学习/深度学习 Web App开发 人工智能
Amurex:开源AI会议助手,提供实时建议、智能摘要、快速回顾关键信息
Amurex是一款开源的AI会议助手,提供实时建议、智能摘要、快速回顾关键信息等功能,帮助用户提升会议效率。本文将详细介绍Amurex的功能、技术原理以及如何运行和使用该工具。
66 18
Amurex:开源AI会议助手,提供实时建议、智能摘要、快速回顾关键信息
|
6天前
|
人工智能 数据库 自然语言处理
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
「拥抱Data+AI」系列文章由阿里云瑶池数据库推出,基于真实客户案例,展示Data+AI行业解决方案。本文通过钉钉AI助理的实际应用,探讨如何利用阿里云Data+AI解决方案实现智能问数服务,使每个人都能拥有专属数据分析师,显著提升数据查询和分析效率。点击阅读详情。
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
|
10天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
60 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
12天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
54 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
12天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
54 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
14天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
33 5
【AI系统】模型转换流程
|
14天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型转换基本介绍
模型转换技术旨在解决深度学习模型在不同框架间的兼容性问题,通过格式转换和图优化,将训练框架生成的模型适配到推理框架中,实现高效部署。这一过程涉及模型格式转换、计算图优化、算子统一及输入输出支持等多个环节,确保模型能在特定硬件上快速、准确地运行。推理引擎作为核心组件,通过优化阶段和运行阶段,实现模型的加载、优化和高效执行。面对不同框架的模型文件格式和网络结构,推理引擎需具备高度的灵活性和兼容性,以支持多样化的应用场景。
37 4
【AI系统】模型转换基本介绍

相关产品

  • 日志服务
  • 下一篇
    DataWorks