OpenCV轮廓拟合与凸包的讲解与实战应用(附Python源码)

简介: OpenCV轮廓拟合与凸包的讲解与实战应用(附Python源码)

需要源码和图片请点赞关注收藏后评论区留言私信~~~

一、轮廓拟合

拟合是指将平面上的一系列点,用一条光滑的曲线连接起来,轮廓的拟合就是将凹凸不平的轮廓用平整的几何图形体现出来

1:矩形包围框

矩形包围框是指图像轮廓的最小矩形边界,opencv提供的boundingRect方法可以自动计算轮廓最小矩形边界的坐标、宽和高,语法如下

retval=cv2.boundingRect(array)

array 轮廓数组

retval 元组类型 包含四个整数值 分别是最小矩形包围框的 左上角顶点的横坐标,左上角顶点的纵坐标,矩形的宽和高

下面为爆炸图形绘制矩形包围框

部分代码如下

import cv2
img = cv2.imread("shape2.png")  # 读取原图
graycv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 从彩色图像变成单通道灰度图像
# 将灰度图像进行二值化阈值处理
t, biry = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 获取二值化图像中的轮廓极轮廓层次数据
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
x, y, w, h = cv2.boundingRect(contours[0])  # 获取第一个轮廓的最小矩形边框,记录坐标和宽高
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 绘制红色矩形
cv2.how("img", img)  # 显示绘制结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

2:圆形包围框

圆形包围框与矩形包围框一样,是图像轮廓的最小圆形边界,opencv提供的minEnclosingCircle方法可以自动计算轮廓最小圆形边界的圆心和半径 语法如下

center,radius=cv2.minEnclosingCircle(points)

points 轮廓数组

center 元组类型 包含两个浮点值 是最小圆形包围框圆心的横纵坐标

radius 浮点类型 最小圆形包围框的半径

下面为爆炸图形绘制圆形包围框

二、凸包

如果能找出图形最外层的端点,将这些端点连接起来,就可以围出一个包围图形的最小包围框,这种包围框叫凸包

凸包是最逼近轮廓的多边形,凸包的每一处都是凸出来的,也就是任意三个点组成的内角均小于180度

opencv提供的convexHull方法可以自动找出轮廓的凸包 语法如下

hull=cv2.convexHull(points,clockwise,returnPoints)

points 轮廓数组

clockwise 可选参数 布尔类型 为true时凸包中的点顺时针排列

returnpoints 可选参数 布尔类型 ture时返回点坐标

hull 凸包的点阵数组

下面为爆炸图形绘制凸包

首先要判断图形的轮廓,然后用convexhull方法找到轮廓的凸包,最后通过polylines方法将凸包中各点连接起来

部分代码如下

import cv2
img = cv2.imread("shape2.png")  # 读取原始图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转为灰度图像
ret, birycv2.threshold(gray, 127, 225, cv2.THRESH_BINARY)  # 二值化阈值处理
# 检测图像中出现的所有轮廓
contours, hiera = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
hull = cv2.vexHull(contours[0])  # 获取轮廓的凸包
cv2.polylines(img, [hull], True, (0, 0, 255), 2)  # 绘制凸包
cv2.imshow("img", img)  # 显示图像
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
17天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
106 6
|
17天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
41 10
|
1月前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
174 45
|
29天前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
1月前
|
并行计算 调度 开发者
探索Python中的异步编程:从基础到实战
在Python的世界里,异步编程是一种让程序运行更加高效、响应更快的技术。本文不仅会介绍异步编程的基本概念和原理,还将通过具体代码示例展示如何在Python中实现异步操作。无论你是初学者还是有经验的开发者,都能从中获益,了解如何运用这一技术优化你的项目。
|
1月前
|
数据处理 Python
探索Python中的异步编程:从基础到实战
在Python的世界中,“速度”不仅是赛车手的追求。本文将带你领略Python异步编程的魅力,从原理到实践,我们不单单是看代码,更通过实例感受它的威力。你将学会如何用更少的服务器资源做更多的事,就像是在厨房里同时烹饪多道菜而不让任何一道烧焦。准备好了吗?让我们开始这场技术烹饪之旅。
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
1月前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
74 4