SVM算法、朴素贝叶斯算法讲解及对iris数据集分类实战(附源码)

简介: SVM算法、朴素贝叶斯算法讲解及对iris数据集分类实战(附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

一、支持向量机SVM

算法原理

支持向量机(Support Vetor Machine,SVM)是一种对线性和非线性数据进行分类的方法。SVM 使用一种非线性映射,把原始训练数据映射到较高的维上,在新的维上,搜索最佳分离超平面

SVM可分类为三类:线性可分(linear SVM in linearly separable case)的线性SVM、线性不可分的线性SVM、非线性(nonlinear)SVM

SVM可以用于数值预测和分类。对于数据非线性可分的情况,通过扩展线性SVM的方法,得到非线性的SVM,即采用非线性映射把输入数据变换到较高维空间,在新的空间搜索分离超平面

SVM的主要目标是找到最佳超平面,以便在不同类的数据点之间进行正确分类。超平面的维度等于输入特征的数量减去1。图11-3显示了分类的最佳超平面和支持向量(实心的数据样本)

利用SVM对iris数据集分类

结果如下

部分代码如下

import numpy as np
from sklearn import svm
from sklearn import datasets
from sklearn import metrics
from sklearn import model_selection
import matplotlib.pyplot as plt
iris = datasets.load_iris()
x, y = iris.data,iris.target
x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y, random_state = 1, test_size = 0.2)
classifier=svm.SVC(kernel='linear',gamma=0.1,decision_function_shape='ovo',C=0.1)
classifier.fit(x_train, y_train.ravel())
print("SVM-输出训练集的准确率为:", classifier.score(x_train, y_train))
print("SVM-输出测.predict(x_test)
classreport = metrics.classification_report(y_test,y_hat)
print(classreport)

二、朴素贝叶斯分类

1. 算法原理

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理(Bayes theorem)为基础,采用了概率推理方法

算法示例:对iris数据集进行朴素贝叶斯分类

Scikit-learn模块中有Naïve Bayes子模块,包含了各种贝叶斯算法。利用贝叶斯分类器时首先设置分类器,然后利用训练样本进行训练和分类

结果如下

from sklearn.datasets import load_iris
from sklearn.naive_bayes import GaussianNB
iris = load_iris()
clf = GaussianNB()#设置分类器
clf.fit(iris.data,iris.target)#训练分类器
y_pred = clf.predict(iris.data)#预测
print("Number of mislabeled points out of %d points:%d" %(iris.data.shape[0],(iris.target != y_pred).sum()))

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
2月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
324 0
|
1月前
|
算法 数据可视化 测试技术
HNSW算法实战:用分层图索引替换k-NN暴力搜索
HNSW是一种高效向量检索算法,通过分层图结构实现近似最近邻的对数时间搜索,显著降低查询延迟。相比暴力搜索,它在保持高召回率的同时,将性能提升数十倍,广泛应用于大规模RAG系统。
133 10
HNSW算法实战:用分层图索引替换k-NN暴力搜索
|
1月前
|
机器学习/深度学习 缓存 算法
微店关键词搜索接口核心突破:动态权重算法与语义引擎的实战落地
本文详解微店搜索接口从基础匹配到智能推荐的技术进阶路径,涵盖动态权重、语义理解与行为闭环三大创新,助力商家提升搜索转化率、商品曝光与用户留存,实现技术驱动的业绩增长。
|
3月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
820 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
1月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
2月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
2月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
190 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
143 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
194 3

热门文章

最新文章

下一篇
oss云网关配置