利用Python和Pandas对小费数据集进行数据分析与可视化实战(超详细 附源码)

简介: 利用Python和Pandas对小费数据集进行数据分析与可视化实战(超详细 附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

下面主要对小费数据集进行数据的分析与可视化,用到的小费数据集来源于Python库的Seaborn中自带的数据,已被事先转存为Excel类型的数据

首先导入模块并且获取数据

import numpy as np
import pandas as pd
%matplotlib inline
fdata=pd.read_excel('tips.xls')
fdata

接下来分析数据

首先查看数据的描述信息

#分析数据
fdata.describe().head()

然后修改列名为汉字 并显示前五条数据

#修改列名为汉字total_bill  tip sex smoker  day time  size
fdata.rename(columns=({'total_bill':'消费总额','tip':'小费','sex':'性别','smoker':'是否抽烟',
                       'day':'星期','time':'聚餐时间段','size':'人数'}),inplace=True)
fdata.head()

接着计算出人均消费

fdata['人均消费']=round(fdata['消费总额']/fdata['人数'],2)
fdata.head()

查询抽烟男性中人均消费大于15的数据

# 方法1:
fdata[(fdata['是否抽烟']=='Yes') &(fdata['性别']=='Male') & (fdata['人均消费']> 15) ]
# 方法2:
# fdata[(fdata.是否抽烟=='Yes') &(fdata.性别=='Male') & (fdata.人均消费> 15) ]
# 方法3:
# fdata.query( '是否抽烟=="Yes" & 性别=="Male" & 人均消费>15')

然后分析小费金额和消费总额的关系 可视化如下图

#分析小费和总金额的关系,散点图
fdata.plot(kind='scatter',x='消费总额',y='小费')
#正相关关系

从图中可以看出 小费金额与消费总额存在正相关的关系,类似的 还可以分析是否吸烟 星期 聚餐时间段和人数与小费的关系

下面分析男性顾客和女性顾客谁更慷慨

#分析男女顾客哪个更慷慨,就是分组看看男性还是女性的小费平均水平更高
fdata.groupby('性别')['小费'].mean()

从分析结果可以看出 男性顾客明显慷慨一些

下面分析星期和小费的关系

#分析日期和小费的关系,直方图
print(fdata['星期'].unique())
r=fdata.groupby('星期')['小费'].mean()
fig=r.plot(kind='bar',x='星期',y='小费',fontsize=12,rot=36)
# fig.axes.title.set_size(16)

从柱状图可以看出 周六周日的小费比周四 周五的要高一些

下面分析性别+吸烟的组合因素对慷慨度的影响

#性别+抽烟书对慷慨度的影响
r=fdata.groupby(['性别','是否抽烟'])['小费'].mean()
fig=r.plot(kind='bar',x=['性别','是否抽烟'],y='小费',fontsize=12,rot=30)
fig.axes.title.set_size(16)

从分析图可以看出 不吸烟的男性付小费更加慷慨

下面分析聚餐时间段与小费数额的关系

#聚餐时间与小费数额的关系
r=fdata.groupby('聚餐时间段')['小费'].mean()
fig=r.plot(kind='bar',x='聚餐时间',y='小费')
fig.axes.title.set_size(16)

从分析图可以看出 晚餐时段的小费比午餐时段的要高一些

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
4月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
5月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
132 3
|
1月前
|
人工智能 数据可视化 前端开发
Probly:开源 AI Excel表格工具,交互式生成数据分析结果与可视化图表
Probly 是一款结合电子表格功能与 Python 数据分析能力的 AI 工具,支持在浏览器中运行 Python 代码,提供交互式电子表格、数据可视化和智能分析建议,适合需要强大数据分析功能又希望操作简便的用户。
330 2
|
2月前
|
数据采集 机器学习/深度学习 数据挖掘
利用Beautiful Soup和Pandas进行网页数据抓取与清洗处理实战
本文通过一个实战案例,介绍如何使用Python中的Beautiful Soup库抓取网页数据,并用Pandas进行清洗和处理。首先,确保安装了requests、beautifulsoup4和pandas库。接着,通过requests获取HTML内容,使用Beautiful Soup解析并提取新闻标题、发布时间和正文。然后,利用Pandas对数据进行清洗,包括去除多余空格、替换特殊字符、删除无效数据等。最后,根据需求进行数据处理(如过滤关键词)并保存为CSV或Excel文件。这个案例适合初学者和有一定经验的用户,帮助快速掌握这两个强大的工具。
61 3
|
2月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
5月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
207 5
|
5月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
5月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
5月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
5月前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力

热门文章

最新文章