利用Python和Pandas对小费数据集进行数据分析与可视化实战(超详细 附源码)

简介: 利用Python和Pandas对小费数据集进行数据分析与可视化实战(超详细 附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

下面主要对小费数据集进行数据的分析与可视化,用到的小费数据集来源于Python库的Seaborn中自带的数据,已被事先转存为Excel类型的数据

首先导入模块并且获取数据

import numpy as np
import pandas as pd
%matplotlib inline
fdata=pd.read_excel('tips.xls')
fdata

接下来分析数据

首先查看数据的描述信息

#分析数据
fdata.describe().head()

然后修改列名为汉字 并显示前五条数据

#修改列名为汉字total_bill  tip sex smoker  day time  size
fdata.rename(columns=({'total_bill':'消费总额','tip':'小费','sex':'性别','smoker':'是否抽烟',
                       'day':'星期','time':'聚餐时间段','size':'人数'}),inplace=True)
fdata.head()

接着计算出人均消费

fdata['人均消费']=round(fdata['消费总额']/fdata['人数'],2)
fdata.head()

查询抽烟男性中人均消费大于15的数据

# 方法1:
fdata[(fdata['是否抽烟']=='Yes') &(fdata['性别']=='Male') & (fdata['人均消费']> 15) ]
# 方法2:
# fdata[(fdata.是否抽烟=='Yes') &(fdata.性别=='Male') & (fdata.人均消费> 15) ]
# 方法3:
# fdata.query( '是否抽烟=="Yes" & 性别=="Male" & 人均消费>15')

然后分析小费金额和消费总额的关系 可视化如下图

#分析小费和总金额的关系,散点图
fdata.plot(kind='scatter',x='消费总额',y='小费')
#正相关关系

从图中可以看出 小费金额与消费总额存在正相关的关系,类似的 还可以分析是否吸烟 星期 聚餐时间段和人数与小费的关系

下面分析男性顾客和女性顾客谁更慷慨

#分析男女顾客哪个更慷慨,就是分组看看男性还是女性的小费平均水平更高
fdata.groupby('性别')['小费'].mean()

从分析结果可以看出 男性顾客明显慷慨一些

下面分析星期和小费的关系

#分析日期和小费的关系,直方图
print(fdata['星期'].unique())
r=fdata.groupby('星期')['小费'].mean()
fig=r.plot(kind='bar',x='星期',y='小费',fontsize=12,rot=36)
# fig.axes.title.set_size(16)

从柱状图可以看出 周六周日的小费比周四 周五的要高一些

下面分析性别+吸烟的组合因素对慷慨度的影响

#性别+抽烟书对慷慨度的影响
r=fdata.groupby(['性别','是否抽烟'])['小费'].mean()
fig=r.plot(kind='bar',x=['性别','是否抽烟'],y='小费',fontsize=12,rot=30)
fig.axes.title.set_size(16)

从分析图可以看出 不吸烟的男性付小费更加慷慨

下面分析聚餐时间段与小费数额的关系

#聚餐时间与小费数额的关系
r=fdata.groupby('聚餐时间段')['小费'].mean()
fig=r.plot(kind='bar',x='聚餐时间',y='小费')
fig.axes.title.set_size(16)

从分析图可以看出 晚餐时段的小费比午餐时段的要高一些

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
10天前
|
存储 数据挖掘 数据处理
Pandas中explode()函数的应用与实战
Pandas中explode()函数的应用与实战
16 0
|
5天前
|
存储 数据可视化 算法
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
|
5天前
|
存储 缓存 API
python源码解读_python代码解释
python源码解读_python代码解释
|
5天前
|
数据可视化 数据挖掘 Python
【Python DataFrame专栏】DataFrame的可视化探索:使用matplotlib和seaborn
【5月更文挑战第20天】本文介绍了使用Python的pandas、matplotlib和seaborn库进行数据可视化的步骤,包括创建示例数据集、绘制折线图、柱状图、散点图、热力图、箱线图、小提琴图和饼图。这些图表有助于直观理解数据分布、关系和趋势,适用于数据分析中的探索性研究。
【Python DataFrame专栏】DataFrame的可视化探索:使用matplotlib和seaborn
|
5天前
|
大数据 Python
【Python DataFrame专栏】DataFrame内存管理与优化:大型数据集处理技巧
【5月更文挑战第20天】本文介绍了使用Python的pandas库优化DataFrame内存管理的六个技巧:1) 查看DataFrame内存占用;2) 使用高效数据类型,如`category`和`int32`;3) 仅读取需要的列;4) 分块处理大数据集;5) 利用`inplace`参数节省内存;6) 使用`eval()`和`query()`进行快速筛选。这些方法有助于处理大型数据集时提高效率。
【Python DataFrame专栏】DataFrame内存管理与优化:大型数据集处理技巧
|
8天前
|
Python
10个Python绘画表白代码【内附源码,再不收藏你只能单身了】_有趣的python代码表白
10个Python绘画表白代码【内附源码,再不收藏你只能单身了】_有趣的python代码表白
|
8天前
|
数据安全/隐私保护 Python 算法
Python 蜻蜓fm有声书批量下载 支持账号登录 原创源码,2024年最新Python面试回忆录
Python 蜻蜓fm有声书批量下载 支持账号登录 原创源码,2024年最新Python面试回忆录
|
10天前
|
数据采集 数据可视化 数据挖掘
利用Python和Pandas库优化数据分析流程
在当今数据驱动的时代,数据分析已成为企业和个人决策的重要依据。Python作为一种强大且易于上手的编程语言,配合Pandas这一功能丰富的数据处理库,极大地简化了数据分析的流程。本文将探讨如何利用Python和Pandas库进行高效的数据清洗、转换、聚合以及可视化,从而优化数据分析的流程,提高数据分析的效率和准确性。
|
10天前
|
机器学习/深度学习 存储 算法
Pandas中的get_dummies()函数实战应用详解
Pandas中的get_dummies()函数实战应用详解
14 1
|
10天前
|
SQL 数据采集 数据挖掘
构建高效的Python数据处理流水线:使用Pandas和NumPy优化数据分析任务
在数据科学和分析领域,Python一直是最受欢迎的编程语言之一。本文将介绍如何通过使用Pandas和NumPy库构建高效的数据处理流水线,从而加速数据分析任务的执行。我们将讨论如何优化数据加载、清洗、转换和分析的过程,以及如何利用这些库中的强大功能来提高代码的性能和可维护性。