【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)

简介: 【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

一、半环形数据分类

Tensorflow是常见流行的深度学习平台,下面利用它来对半环形数据集进行分类

首先产生半环形数据集

接着开始训练模型 总共训练三十次 可以看到损失在逐渐降低,精确度在逐渐提高

结果展示如下, 可以看出大致可以拟合出一条折线将数据集分为两个区域 类似于kmeans算法

部分代码如下

# encoding: utf-8
import numpy as np
from sklearn.datasets import make_moons
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras import layers, Sequential, optimizers, losses, metrics
from tensorflow.keras.layers import Dense
import matplotlib.pyplot as plt
# 产生一个半环形数据集
X, y = make_moons(200, noise=0.25, random_state=100)  
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=2)
print(X.shape, y.shape)
def make_plot(X, y, plot_name, XX=None, YY=None, preds=None):
    plt.figure()
    axes = plt.gca()
    x_min = X[:, 0].min() - 1
    x_max = X[:, 0].max() + 1
    y_min = X[:, 1].min() - 1
    y_max = X[:, 1].max() + 1
    axes.set_xlim([x_min, x_max])
    axes.set_ylim([y_min, y_max])
    axes.set(xlabel="$x_l$", ylabel="$x_2$")
    if XX is None and YY is None and preds is None:
        yr = y.ravel()
        for step in range(X[:, 0].size):
            if yr[step] == 1:
                plt.scatter(X[step, 0], X[step, 1], c='b', s=20,  edgecolors='none', marker='x')
            else:
                plt.scatter(X[step, 0], X[step, 1], c='r', s=30, edgecolors='none', marker='o')
        plt.show()
    else:
        plt.contour(XX, YY, preds, cmap=plt.cm.spring, alpha=0.8)
        plt.scatter(X[:, 0], X[:, 1], c=y, s=20, cmap=plt.cm.Greens, edgecolors='k')
        plt.rcParams['font.sans-serif'] = ['SimHei']  
        plt.rcParams['axes.unicode_minus'] = False
        plt.title(plot_name)
        plt.show()
make_plot(X, y, None)
#创建容器 
model = Sequential()  
#创建第一层
model.add(Dense(8, input_dim=2, activation='relu'))  
for _ in range(3):
    model.add(Dense(32, activation='relu'))
#创建最后一层,激活
model
y_min = X[:, 1].min() - 1
y_max = X[:, 1].max() + 1
XX, YY = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01)) 
Z = model.predict_classes(np.c_[XX.ravel(), YY.ravel()])
preds = Z.reshape(XX.shape)
title = "分类结果"
make_plot(X_train, y_train, title, XX, YY, preds)

 

二、手写数字识别

下面使用深度学习进行一个简单的手写数字识别

输出结果如下 精度大概在百分之九十七

代码如下

import tensorflow as tf
#载入MNIST 数据集。
mnist = tf.keras.datasets.mnist
#拆分数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
#将样本进行预处理,并从整数转换为浮点数
x_train, x_test = x_train / 255.0, x_test / 255.0
#使用tf.keras.Sequential将模型的各层堆叠,并设置参数
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
#设置模型的优化器和损失函数
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
#训练并验证模型
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test,  y_test, verbose=2)

三、猫狗识别

下面利用tensorflow平台实现对猫狗品种的识别

原图片如下

识别结果如下 第二项是品种 第三项是预测的概率

部分代码如下

from tensorflow.keras.applications.resnet50 import ResNet50 
from tensorflow.keras.preprocessing import image 
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions 
import numpy as np 
from PIL import ImageFont, ImageDraw, Image 
import cv2
img_path = 'dog.jpg'     #进行狗的判断
#img_path = 'cat.jpg'     #进行猫的判断
#img_path = 'deer.jpg'    #进行鹿的判断
img = image.load_img(img_path, target_size=(224, 224)) 
x = image.img_to_array(img) 
x = np.expand_dims(x, axis=0) 
x = preprocess_input(x)
weights_path = 'resnet50_weights_tf_dim_ordering_tf_kernels.h5'
def get_model(): 
    model = ResNet50(weights=weights_path) 
    # 导入模型以及预训练权重
    print(model.summary()) # 打印模型概况 
    return model
model = get_model()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
4天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
25 5
|
5天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
20 2
|
7天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
25 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
22 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
7天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
21 2
|
4天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
12 0
|
8天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
9天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
103 59

热门文章

最新文章