【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)

简介: 【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

一、半环形数据分类

Tensorflow是常见流行的深度学习平台,下面利用它来对半环形数据集进行分类

首先产生半环形数据集

接着开始训练模型 总共训练三十次 可以看到损失在逐渐降低,精确度在逐渐提高

结果展示如下, 可以看出大致可以拟合出一条折线将数据集分为两个区域 类似于kmeans算法

部分代码如下

# encoding: utf-8
import numpy as np
from sklearn.datasets import make_moons
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras import layers, Sequential, optimizers, losses, metrics
from tensorflow.keras.layers import Dense
import matplotlib.pyplot as plt
# 产生一个半环形数据集
X, y = make_moons(200, noise=0.25, random_state=100)  
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=2)
print(X.shape, y.shape)
def make_plot(X, y, plot_name, XX=None, YY=None, preds=None):
    plt.figure()
    axes = plt.gca()
    x_min = X[:, 0].min() - 1
    x_max = X[:, 0].max() + 1
    y_min = X[:, 1].min() - 1
    y_max = X[:, 1].max() + 1
    axes.set_xlim([x_min, x_max])
    axes.set_ylim([y_min, y_max])
    axes.set(xlabel="$x_l$", ylabel="$x_2$")
    if XX is None and YY is None and preds is None:
        yr = y.ravel()
        for step in range(X[:, 0].size):
            if yr[step] == 1:
                plt.scatter(X[step, 0], X[step, 1], c='b', s=20,  edgecolors='none', marker='x')
            else:
                plt.scatter(X[step, 0], X[step, 1], c='r', s=30, edgecolors='none', marker='o')
        plt.show()
    else:
        plt.contour(XX, YY, preds, cmap=plt.cm.spring, alpha=0.8)
        plt.scatter(X[:, 0], X[:, 1], c=y, s=20, cmap=plt.cm.Greens, edgecolors='k')
        plt.rcParams['font.sans-serif'] = ['SimHei']  
        plt.rcParams['axes.unicode_minus'] = False
        plt.title(plot_name)
        plt.show()
make_plot(X, y, None)
#创建容器 
model = Sequential()  
#创建第一层
model.add(Dense(8, input_dim=2, activation='relu'))  
for _ in range(3):
    model.add(Dense(32, activation='relu'))
#创建最后一层,激活
model
y_min = X[:, 1].min() - 1
y_max = X[:, 1].max() + 1
XX, YY = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01)) 
Z = model.predict_classes(np.c_[XX.ravel(), YY.ravel()])
preds = Z.reshape(XX.shape)
title = "分类结果"
make_plot(X_train, y_train, title, XX, YY, preds)

 

二、手写数字识别

下面使用深度学习进行一个简单的手写数字识别

输出结果如下 精度大概在百分之九十七

代码如下

import tensorflow as tf
#载入MNIST 数据集。
mnist = tf.keras.datasets.mnist
#拆分数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
#将样本进行预处理,并从整数转换为浮点数
x_train, x_test = x_train / 255.0, x_test / 255.0
#使用tf.keras.Sequential将模型的各层堆叠,并设置参数
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
#设置模型的优化器和损失函数
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
#训练并验证模型
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test,  y_test, verbose=2)

三、猫狗识别

下面利用tensorflow平台实现对猫狗品种的识别

原图片如下

识别结果如下 第二项是品种 第三项是预测的概率

部分代码如下

from tensorflow.keras.applications.resnet50 import ResNet50 
from tensorflow.keras.preprocessing import image 
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions 
import numpy as np 
from PIL import ImageFont, ImageDraw, Image 
import cv2
img_path = 'dog.jpg'     #进行狗的判断
#img_path = 'cat.jpg'     #进行猫的判断
#img_path = 'deer.jpg'    #进行鹿的判断
img = image.load_img(img_path, target_size=(224, 224)) 
x = image.img_to_array(img) 
x = np.expand_dims(x, axis=0) 
x = preprocess_input(x)
weights_path = 'resnet50_weights_tf_dim_ordering_tf_kernels.h5'
def get_model(): 
    model = ResNet50(weights=weights_path) 
    # 导入模型以及预训练权重
    print(model.summary()) # 打印模型概况 
    return model
model = get_model()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
115 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
327 55
|
25天前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
99 61
Python装饰器实战:打造高效性能计时工具
|
2月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
189 73
|
21天前
|
运维 Shell 数据库
Python执行Shell命令并获取结果:深入解析与实战
通过以上内容,开发者可以在实际项目中灵活应用Python执行Shell命令,实现各种自动化任务,提高开发和运维效率。
50 20
|
1月前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
|
2月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
94 21
|
2月前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
107 23
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费习惯预测的深度学习模型
使用Python实现智能食品消费习惯预测的深度学习模型
146 19
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
72 2

热门文章

最新文章