【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)

简介: 【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

超参数调优

超参数调优需要依靠试验的方法,以及人的经验。对算法本身的理解越深入,对实现算法的过程了解越详细,积累了越多的调优经验,就越能够快速准确地找到最合适的超参数

试验的方法,就是设置了一系列超参数之后,用训练集来训练并用验证集来检验,多次重复以上过程,取效果最好的超参数。训练数据的划分可以采用保持法,也可以采用K-折交叉验证法。超参数调优的试验方法主要有两种:网格搜索和随机搜索。

网格搜索

网格搜索法将各超参数形成的空间划分为若干小空间,在每一个小空间上取一组值作为代表进行试验。取效果最好的那组值作为最终的超参数值。

这种暴力的方法,只适合于小样本量、少参数的情况,否则效率很低。可以作适当地改进,1)在影响大的参数上作更细的划分,而在影响小的参数上作粗的划分,2)先将网格粗切分,然后再对最好的网格进行细切分,3)还有一种改进效率的贪心搜索方法,先在影响最大的参数上进行一维搜索,找到最优参数,然后固定它,再在余下参数中影响最大参数上进行一维搜索,如此下去,直到搜索完所有参数。

随机搜索

随机搜索的思想和网格搜索比较相似,只是不固定分隔子空间,而是随机分隔。它将每个特征的取值都看成是一个分布,然后依概率从中取值。每轮试验中,每个特征取一个值,进行模型训练。随机搜索一般会比网格搜索要快一些。但是无法保证得到最优超参数值。

在sklearn.model_selection.RandomizedSearchCV中实现了随机搜索。

房价回归预测实战

Kaggle提供了一个房价预测的题目,在官网及其他网站出现了大量对该题目的分析和研究,很适合初学者参考学习。

该题目是依据房屋的属性信息,包括房屋的卧室数量、卫生间数量、房屋的大小、房屋地下室的大小、房屋的外观、房屋的评分、房屋的修建时间、房屋的翻修时间、房屋的位置信息等,对房屋的价格进行预测。

1:初步数据分析

从Kaggle官网下载数据后,用Pandas进行初步分析,发现数据完整,没有缺失和重复的现象

2:划分训练集和验证集,并标准化

3:初步建立模型

选择K近邻回归、决策树回归、随机森林回归和梯度提升树回归等多个模型进行初步实验

4:超参数调优

对用时最少、得分最高的梯度提升树回归模型进行超参数调优。具体采用网格搜索方法。

5:特征选择

用相关系数来观察不同特征之间以及它们和标签值之间的相关性

去掉与标签相关系数值较小的特征,重新训练模型,比较结果,发现得分略降低,但用时大幅下降

用散点图观察特征与标签的相关性

从平均绝对误差来看,第一应该去掉的特征bathrooms 从均方误差来看,第一应该去掉的特征是sqft_basement

神经网络模型

最后 尝试使用全连接层神经网络来对该回归问题建模

训练过程和训练误差结果如下

最后 部分代码如下

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
X_train= sc.transform(X_train)
X_test = sc.transform(X_test)
from sklearn.neighbors import KNeighborsRegressor
model = KNeighborsRegressor(n_neighbors=10)
time_start=time.time()
model.fit(X_train, y_train)
print('K近邻回归模型训练用时:', time.time()-time_start)
y_pred=model.predict(X_test)
print ('K近邻回归模型在验证集上的平均绝对误差和均方误差分别为:', 
       mean_absolute_error(y_test,y_pred), mean_squared_error(y_test,y_pred))
from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor()
time_start=time.time()
model.fit(X_train, y_train)
print('决策树回归模型训练用时:', time.time()-time_start)
y_pred=model.predict(X_test)
print ('决策树回归模型在验证集上的平均绝对误差和均方误差分别为:', 
       mean_absolute_error(y_test,y_pred), mean_squared_error(y_test,y_pred))
from sklearn.ensemble import RandomForestRegressor 
model = RandomForestRegressor(n_estimators=500)
time_start=time.time()
model.fit(X_train, y_train)
print('随机森林回归模型训练用时:', time.time()-time_start)
y_pred=model.predict(X_test)
print ('随机森林回归模型在验证集上的平均绝对误差和均方误差分别为:', 
       mean_absolute_error(y_test,y_pred), mean_squared_error(y_test,y_pred))
plt.figure(figsize=(14,12))
sns.heatmap(raw_data.corr(), annot=True, cmap="YlGnBu")
plt.title('Feature Correlation')
plt.tight_layout()
plt.show()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
2月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
655 109
|
3月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
299 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
4月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
196 2
|
2月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
3月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
3月前
|
算法 安全 网络安全
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
181 0
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
523 14
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

推荐镜像

更多
下一篇
oss云网关配置