【Python机器学习】卷积神经网络卷积层、池化层、Flatten层、批标准化层的讲解(图文解释)

简介: 【Python机器学习】卷积神经网络卷积层、池化层、Flatten层、批标准化层的讲解(图文解释)

卷积神经网络

卷积神经网络(convolutional neural network, CNN)在提出之初被成功应用于手写字符图像识别,2012年的AlexNet网络在图像分类任务中取得成功,此后,卷积神经网络发展迅速,现在已经被广泛应用于图形、图像、语音识别等领域。

图片的像素数往往非常大,如果用多层全连接网络来处理,则参数数量将大到难以有效训练的地步。受猫脑研究的启发,卷积神经网络在多层全连接网络的基础上进行了改进,它在不减少层数的前提下有效提升了训练速度。卷积神经网络在多个研究领域都取得了成功,特别是在与图形有关的分类任务中。

卷积层和池化层是卷积神经网络的核心组成,它们和全连接层可以组合成很深层次的网络。卷积神经网络还可以按需要添加用来抑制过拟合的Dropout层、拉平多维数据的Flatten层、加快收敛和抑制梯度消散的BatchNormalization层等等。

卷积层

二维卷积层Conv2d的输入是:input_shape=(28,28,1)。这与前文讨论的所有机器学习模型的输入都不同,前文模型的输入是一维向量,该一维向量要么是经特征工程提取出来的特征,要么是被拉成一维的图像数据。而这里卷积层的输入是图片数据组成的多维数据。

MNIST图片中,只有一种颜色,通常称灰色亮度。MNIST图片的维度是(28,28,1),前面两维存储28×28个像素点的坐标位置,后面1维表示像素点的灰色亮度值,因此它是28×28的单通道数据。

从数学上来讲,卷积是一种积分变换。在深度学习中,它用来做数据的卷积运算,在图像处理领域取得了非常好的效果。

单通道数据上的卷积运算包括待处理张量I、卷积核K和输出张量S三个组成部分,它们的大小分别为4×4、3×3和2×2。

记待处理的张量为I,卷积核为K,每一次卷积运算可表述为:

式中,I∗K表示卷积运算,M和N分别表示卷积核的长度和宽度。i,j是待处理张量I的坐标位置,也是卷积核左上角对齐的位置

记待处理张量I的长度和宽度为P和Q,则输出张量S的长度P^′和Q^′宽度分别为:

虽然要扫描整个输入层,但一个通道只有一个卷积核,因此,对于整个输入层来说,前向传递计算时的参数是一样的,这称为参数共享(parameter sharing)。参数共享大大减少了需要学习的参数的数量。

在卷积运算中,一般会设置多个卷积核。示例中设置了32个卷积核(TensorFlow中称为过滤器filters),因此该卷积层的输出为24×24×32,也就是说将28×28×1的数据变成了24×24×32的,在画神经网络结构图时,一般用下图中的长方体来表示上述卷积运算,水平方向长度示意卷积核的数量。

因为输入是单通道的,因此每卷积核只有一层,它的参数为5×5+1=26,共32个卷积核,因此训练参数为26×32=832个。

如果待处理张量规模很大,可以将卷积核由依次移动改为跳跃移动,即加大步长(strides),减少计算量,加快训练速度。

为了提取到边缘的特征,可以在待处理张量的边缘填充0再进行卷积运算,称为零填充(zero-padding)。填充也可以根据就近的值进行填充。边缘填充的另一个用途是在张量与卷积核不匹配时,通过填充使之匹配,从而卷积核能扫描到所有数据。

卷积层代码如下

### MindSpore
class mindspore.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, has_bias=False, weight_init='normal', bias_init='zeros', data_format='NCHW')
### TensorFlow2
tf.keras.layers.Conv2D(
    filters, kernel_size, strides=(1, 1), padding='valid',
    data_format=None, dilation_rate=(1, 1), groups=1, activation=None,
    use_bias=True, kernel_initializer='glorot_uniform',
    bias_initializer='zeros', kernel_regularizer=None,
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,
    bias_constraint=None, **kwargs
)

池化层和Flatten层

池化(pooling)层一般跟在卷积层之后,用于压缩数据和参数的数量。

池化操作也叫下采样(sub-sampling),具体过程与卷积层基本相同,只不过卷积核只取对应位置的最大值或平均值,分别称为最大池化或平均池化。

池化层的移动方式与卷积层不同,它是不重叠地移动。

Flatten层很简单,只是将输入的多维数据拉成一维的,直观上可理解为将数据“压平”。

除卷积层、池化层和全连接层(输入之前隐含Flatten层)之外的层,不改变网络结构,因此,一般只用这三层来表示神经网络的结构。

批标准化层

针对误差难继续传递问题,批标准化对每一层的批量输入数据x进行标准化,使之尽量避免落入饱和区,具体来讲就是使之均值为0,方差为1。对每一批输入数据B={x_1,x_2,…,x_m}:

 

其中,ϵ为防止除0的很小的常数。前三步分别为计算均值、计算方差、标准化,最后一步是对归一化后的结果进行缩放和平移,其中的γ和β是要学习的参数。

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
151 55
|
1月前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
1月前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
81 2
|
21天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
120 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
27天前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
41 6
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
54 8
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
172 7
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。

热门文章

最新文章