PyTorch深度学习基础之Reduction归约和自动微分操作讲解及实战(附源码 超详细必看)

简介: PyTorch深度学习基础之Reduction归约和自动微分操作讲解及实战(附源码 超详细必看)

创作不易 觉得有帮助请点赞关注收藏~~~

一、PyTorch的Reduction操作

Reduction运算的特点是它往往对一个Tensor内的元素做归约操作,比如torch.max找极大值,torch.cumsum计算累加,它还提供了dim参数来指定沿矩阵哪个维度执行操作

测试效果如下

torch.unique用于找出矩阵中出现了哪些元素

测试代码如下

import  torch
a=torch.tensor([[1,2],[3,4]])
print("全局最大值",torch.max(a))
print(torch.max(a,dim=0))
print("沿着横轴计算每一列的累加",torch.cumsum(a,dim=0))
print("沿着纵轴累计",torch.cumsum(a,dim=1))
a=torch.randint(0,3,(3,3))
print(a)
print(torch.unique(a))

二、PyTorch的自动微分

将Tensor的requires_grad属性设置为True时,PyTorch的torch.autograd会自动地追踪它的计算轨迹,当需要计算微分的时候,只需要对最终计算结果的Tensor调用backward方法,中间所有计算节点的微分就会被保存在grad属性当中了

测试效果如下

测试代码如下

import  torch
a=torch.tensor([[1,2],[3,4]])
print("全局最大值",torch.max(a))
print(torch.max(a,dim=0))
print("沿着横轴计算每一列的累加",torch.cumsum(a,dim=0))
print("沿着纵轴累计",torch.cumsum(a,dim=1))
a=torch.randint(0,3,(3,3))
print(a)
print(torch.unique(a))
############
x=torch.arange(9).view(3,3)
print(x.requires_grad)
x=torch.rand(3,3,requires_grad=True)
print(x)
w=torch.ones(3,3,requires_grad=True)
y=torch.sum(torch.mm(w,x))
print(y)
print(y.backward())
print(y.grad)
print(x.grad)
print(w.grad)
相关文章
|
14天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
157 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
3月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
76 7
|
4月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
623 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
150 0
|
4月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
145 2
|
26天前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
73 22
|
2月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
206 6
|
5天前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
69 40
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
202 16
|
2月前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
109 19