Python高级算法——K近邻算法(K-Nearest Neighbors,KNN)

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Python高级算法——K近邻算法(K-Nearest Neighbors,KNN)

Python中的K近邻算法(K-Nearest Neighbors,KNN):理论与实践

K近邻算法(K-Nearest Neighbors,KNN)是一种简单而有效的监督学习算法,广泛应用于分类和回归问题。本文将深入讲解Python中的K近邻算法,包括算法原理、距离度量、K值选择、优缺点,以及使用代码示例演示KNN在实际问题中的应用。

算法原理

1. K近邻算法的基本原理

K近邻算法基于一个简单的思想:如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

距离度量

2. 不同距离度量方法

KNN的核心在于度量样本间的距离,常用的距离度量方法包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。

K值选择

3. K值选择的重要性

K值的选择对KNN的性能有很大影响。选择较小的K值容易受到噪声的影响,而选择较大的K值可能使得较远的样本点影响最终的分类结果。

优缺点

4. KNN算法的优缺点

KNN算法的优点包括简单易用、无需训练过程、适用于多类别问题等。缺点则主要体现在计算复杂度较高、需要大量存储空间等方面。

使用代码演示

5. 使用代码演示

下面是一个使用Scikit-Learn库实现K近邻算法进行分类的示例:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics

# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 构建K近邻分类器
knn = KNeighborsClassifier(n_neighbors=3)

# 在训练集上训练模型
knn.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = knn.predict(X_test)

# 计算准确率
accuracy = metrics.accuracy_score(y_test, y_pred)
print(f'准确率:{accuracy}')

应用场景

6. 应用场景

K近邻算法广泛应用于图像识别、手写字体识别、推荐系统等领域。由于其简单而有效的特性,KNN在小型数据集上表现良好。

总结

K近邻算法是一种简单而强大的监督学习算法,适用于多种分类和回归问题。本文详细介绍了KNN的算法原理、距离度量、K值选择、优缺点,并通过代码示例演示了KNN在鸢尾花数据集上的应用。在实践中,根据具体问题选择合适的K值和距离度量方法非常重要。通过深入理解KNN,可以更好地应用于实际场景中,取得更好的分类效果。

目录
相关文章
|
21天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
221 55
|
9天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
102 66
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
140 67
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
128 61
|
2月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
119 63
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
160 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
13天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
50 20
|
6天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
11天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
43 5
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用