☆打卡算法☆LeetCode 150. 逆波兰表达式求值 算法解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: ☆打卡算法☆LeetCode 150. 逆波兰表达式求值 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“根据逆波兰表达式求表达式的值。”

2、题目描述

根据 逆波兰表示法,求表达式的值。

有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

注意 两个整数之间的除法只保留整数部分。

可以保证给定的逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。

示例 1:
输入: tokens = ["2","1","+","3","*"]
输出: 9
解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入: tokens = ["4","13","5","/","+"]
输出: 6
解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

二、解题

1、思路分析

首先来了解一下什么是逆波兰表达式。

逆波兰表达式是波兰的逻辑学家卢卡西维兹提出,逆波兰表达式的特点是:没有括号,运算符总是放在和它相关的操作数之后,所以,逆波兰表达式也被称为后缀表达式。

根据 逆波兰表示法,求表达式的值,可以使用栈存储操作数,从左到右遍历逆波兰表达式:

  • 遇到操作数,将操作数入栈
  • 遇到运算符,将两个操作数出栈,先出栈的右操作数,后出栈的是左操作数,使用运算符对两个操作数进行运算
  • 将运算后的得到的新操作数入栈

整个逆波兰表达式遍历之后,栈内只有一个元素,也就是逆波兰表达式的值。

2、代码实现

代码参考:

class Solution {
    public int evalRPN(String[] tokens) {
        Deque<Integer> stack = new LinkedList<Integer>();
        int n = tokens.length;
        for (int i = 0; i < n; i++) {
            String token = tokens[i];
            if (isNumber(token)) {
                stack.push(Integer.parseInt(token));
            } else {
                int num2 = stack.pop();
                int num1 = stack.pop();
                switch (token) {
                    case "+":
                        stack.push(num1 + num2);
                        break;
                    case "-":
                        stack.push(num1 - num2);
                        break;
                    case "*":
                        stack.push(num1 * num2);
                        break;
                    case "/":
                        stack.push(num1 / num2);
                        break;
                    default:
                }
            }
        }
        return stack.pop();
    }
    public boolean isNumber(String token) {
        return !("+".equals(token) || "-".equals(token) || "*".equals(token) || "/".equals(token));
    }
}

1702362031841.jpg

3、时间复杂度

时间复杂度:O(n)

其中n是数组tokens的长度,需要遍历数组一次。

空间复杂度:O(n)

其中n是数组tokens的长度,栈内元素个数不会超过逆波兰表达式的长度。

三、总结

对于这道题来说,还可以使用递归来解。

因为对于逆波兰表达式来说,序列的最后一个符号一定是最先得到计算的,而一旦有符号,就至少需要两个以上的操作数。

用一个变量,记录表达式遍历的位置,遇到操作数可以返回,遇到符号则再递归地计算两个操作数,然后根据不同的符号进行对应的计算返回即可。

相关文章
|
3月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
61 3
|
3天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
27天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
147 30
|
6天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
1月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
249 15
|
3月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
2月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
2月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
75 4
|
2月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
140 80

推荐镜像

更多