MySQL和B树的不知道的那些事

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: MySQL和B树的不知道的那些事

MySQL和B树的不知道的那些事

一、零铺垫

在介绍B树之前,先来看另一棵神奇的树——二叉排序树(Binary Sort Tree),首先它是一棵树,“二叉”这个描述已经很明显了,就是树上的一根树枝开两个叉,于是递归下来就是二叉树了(下图所示),而这棵树上的节点是已经排好序的,具体的排序规则如下:

image.png

若左子树不空,则左子树上所有节点的值均小于它的根节点的值

若右子树不空,则右子树上所有节点的值均大于它的根节点的值

它的左、右子树也分别为二叉排序数(递归定义)

从图中可以看出,二叉排序树组织数据时,用于查找是比较方便的,因为每次经过一次节点时,最多可以减少一半的可能,不过极端情况会出现所有节点都位于同一侧,直观上看就是一条直线,那么这种查询的效率就比较低了,因此需要对二叉树左右子树的高度进行平衡化处理,于是就有了平衡二叉树(Balenced Binary Tree)。

所谓“平衡”,说的是这棵树的各个分支的高度是均匀的,它的左子树和右子树的高度之差绝对值小于1,这样就不会出现一条支路特别长的情况。于是,在这样的平衡树中进行查找时,总共比较节点的次数不超过树的高度,这就确保了查询的效率(时间复杂度为O(logn))。

二、B树的起源

B树,最早是由德国计算机科学家Rudolf Bayer等人于1972年在论文 《Organization and Maintenance of Large Ordered Indexes》提出的,不过我去看了看原文,发现作者也没有解释为什么就叫B-trees了,所以把B树的B,简单地解释为Balanced或者Binary都不是特别严谨,也许作者就是取其名字Bayer的首字母命名的也说不定啊……

三、B树长啥样

还是直接看图比较清楚,图中所示,B树事实上是一种平衡的多叉查找树,也就是说最多可以开m个叉(m>=2),我们称之为m阶b树,为了体现本博客的良心之处,不同于其他地方都能看到2阶B树,这里特意画了一棵5阶B树 。

image.png

总的来说,m阶B树满足以下条件:

每个节点至多可以拥有m棵子树

根节点,只有至少有2个节点(要么极端情况,就是一棵树就一个根节点,单细胞生物,即是根,也是叶,也是树)。

非根非叶的节点至少有的Ceil(m/2)个子树(Ceil表示向上取整,图中5阶B树,每个节点至少有3个子树,也就是至少有3个叉)。 非叶节点中的信息包括[n,A0,K1,A1,K2,A2,…,Kn,An],,其中n表示该节点中保存的关键字个数,K为关键字且Ki

例如查询图中字母表中的K

从根节点P开始,K的位置在P之前,进入左侧指针

左子树中,依次比较C、F、J、M,发现K在J和M之间

沿着J和M之间的指针,继续访问子树,并依次进行比较,发现第一个关键字K即为指定查找的值

四、Plus版——B+树

作为B树的加强版,B+树与B树的差异在于

有n棵子树的节点含有n个关键字(也有认为是n-1个关键字)

所有的叶子节点包含了全部的关键字,及指向含这些关键字记录的指针,且叶子节点本身根据关键字自小而大顺序连接

非叶子节点可以看成索引部分,节点中仅含有其子树(根节点)中的最大(或最小)关键字

image.png

B+树的查找过程,与B树类似,只不过查找时,如果在非叶子节点上的关键字等于给定值,并不终止,而是继续沿着指针直到叶子节点位置。因此在B+树,不管查找成功与否,每次查找都是走了一条从根到叶子节点的路径。

五、MySQL是如何使用B树的

说明:事实上,在MySQL数据库中,诸多存储引擎使用的是B+树,即便其名字看上去是BTREE。

1、innodb的索引机制

先以innodb存储引擎为例,说明innodb引擎是如何利用B+树建立索引的。首先创建一张表:zodiac,并插入一些数据


CREATE TABLE `zodiac` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `name` char(4) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `index_name` (`name`)
); 
insert zodiac(id,name) values(1,'鼠');  
insert zodiac(id,name) values(2,'牛');  
insert zodiac(id,name) values(3,'虎');  
insert zodiac(id,name) values(4,'兔');  
insert zodiac(id,name) values(5,'龙');  
insert zodiac(id,name) values(6,'蛇');  
insert zodiac(id,name) values(7,'马');  
insert zodiac(id,name) values(8,'羊');  
insert zodiac(id,name) values(9,'猴');
insert zodiac(id,name) values(10,'鸡');  
insert zodiac(id,name) values(11,'狗');  
insert zodiac(id,name) values(12,'猪');

对于innodb来说,只有一个数据文件,这个数据文件本身就是用B+树形式组织,B+树每个节点的关键字就是表的主键,因此innodb的数据文件本身就是主索引文件,如下图所示,主索引中的叶子页(leaf page)包含了数据记录,但非叶子节点只包含了主键,术语“聚簇”表示数据行和相邻的键值紧凑地存储在一起,因此这种索引被称为聚簇索引,或聚集索引。

image.png

这种索引方式,可以提高数据访问的速度,因为索引和数据是保存在同一棵B树之中,从聚簇索引中获取数据通常比在非聚簇索引中要来得快。

所以可以说,innodb的数据文件是依靠主键组织起来的,这也就是为什么innodb引擎下创建的表,必须指定主键的原因,如果没有显式指定主键,innodb引擎仍然会对该表隐式地定义一个主键作为聚簇索引。

同样innodb的辅助索引,如下图所示,假设这些字符是按照生肖的顺序排列的(其实我也不知道具体怎么实现,不要在意这些细节,就是举个例子),其叶子节点中也包含了记录的主键,因此innodb引擎在查询辅助索引的时候会查询两次,首先通过辅助索引得到主键值,然后再查询主索引,略微有点啰嗦。。。

image.png

2、MyISAM的索引机制

MyISAM引擎同样也使用B+树组织索引,如下图所示,假设我们的数据不是按照之前的顺序插入的,而是按照图中的是顺序插入表,可以看到MyISAM引擎下,B+树叶子节点中包含的是数据记录的地址(可以简单理解为“行号”),而MyISAM的辅助索引在结构上和主索引没有本质的区别,同样其叶子节点也包含了数据记录的地址,稍微不同的是辅助索引的关键字是允许重复。

image.png

image.png

六、简单对比

1、Innodb辅助索引的叶子节点存储的不是地址,而是主键值,这样的策略减少了当出现行移动或者数据页分裂时辅助索引的维护工作,虽然使用主键值当作指针会让辅助索引占用更多空间,但好处是,Innodb在移动行时无需更新辅助索引中的主键值,而MyISAM需要调整其叶子节点中的地址。

2、innodb引擎下,数据记录是保存在B+树的叶子节点(大小相当于磁盘上的页)上,当插入新的数据时,如果主键的值是有序的,它会把每一条记录都存储在上一条记录的后面,但是如果主键使用的是无序的数值,例如UUID,这样在插入数据时Innodb无法简单地把新的数据插入到最后,而是需要为这条数据寻找合适的位置,这就额外增加了工作,这就是innodb引擎写入性能要略差于MyISAM的原因之一。

Innodb和MyISAM索引的抽象图

image.png



相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
5月前
|
存储 关系型数据库 MySQL
如何理解Mysql的索引及他们的原理--------二叉查找树和平衡二叉树和B树和B+树
如何理解Mysql的索引及他们的原理--------二叉查找树和平衡二叉树和B树和B+树
|
7月前
|
存储 关系型数据库 MySQL
【MySQL 解析】数据库为什么使用B+树而不是B树
【1月更文挑战第11天】【MySQL 解析】数据库为什么使用B+树而不是B树
|
7月前
|
存储 关系型数据库 MySQL
【MySQL】数据库中为什么使用B+树不用B树
【MySQL】数据库中为什么使用B+树不用B树
|
7月前
|
SQL 关系型数据库 数据库
【后端面经】【数据库与MySQL】SQL优化:如何发现SQL中的问题?
【4月更文挑战第12天】数据库优化涉及硬件升级、操作系统调整、服务器/引擎优化和SQL优化。SQL优化目标是减少磁盘IO和内存/CPU消耗。`EXPLAIN`命令用于检查SQL执行计划,关注`type`、`possible_keys`、`key`、`rows`和`filtered`字段。设计索引时考虑外键、频繁出现在`where`、`order by`和关联查询中的列,以及区分度高的列。大数据表改结构需谨慎,可能需要停机、低峰期变更或新建表。面试中应准备SQL优化案例,如覆盖索引、优化`order by`、`count`和索引提示。优化分页查询时避免大偏移量,可利用上一批的最大ID进行限制。
114 3
|
7月前
|
存储 关系型数据库 MySQL
【后端面经】【数据库与MySQL】为什么MySQL用B+树而不用B树?-01
【4月更文挑战第10天】B+树是一种多叉树,用于数据库索引,其特征包括叶子节点存储数据并用链表串联,非叶子节点仅存关键字。由于较低的高度和链表结构,B+树提供高效查询和范围查询。索引分类有聚簇(叶子节点存储数据)和非聚簇,以及覆盖、唯一、前缀、联合、全文和哈希索引。聚簇索引如主键索引,非聚簇索引叶子节点存储主键。覆盖索引可避免回表,提高性能。查询遵循最左匹配原则,优化SQL应选取所需列并考虑常见查询。
46 4
|
7月前
|
存储 关系型数据库 MySQL
【后端面经】【数据库与MySQL】为什么MySQL用B+树而不用B树?-02
【4月更文挑战第11天】数据库索引使用规则:`AND`用`OR`不用,正用反不用,范围中断。索引带来空间和内存代价,包括额外磁盘空间、内存占用和数据修改时的维护成本。面试中可能涉及B+树、聚簇索引、覆盖索引等知识点。MySQL采用B+树,因其利于范围查询和内存效率。数据库不使用索引可能因`!=`、`LIKE`、字段区分度低、特殊表达式或全表扫描更快。索引与NULL值处理在不同数据库中有差异,MySQL允许NULL在索引中的使用。
48 3
|
存储 关系型数据库 MySQL
为什么MySQL索引使用B+树而不用hash表和B树
支持范围查询:B+树索引在数据结构上有序排列,可以有效支持范围查询,例如大于、小于、区间查询等操作。而哈希表无法支持范围查询,只能进行精确查找,而B树在范围查询操作时性能相对较低。
310 0
|
7月前
|
存储 关系型数据库 MySQL
MySQL索引底层实现原理(B树和B+树)
MySQL索引底层实现原理(B树和B+树)
116 0
MySQL索引底层实现原理(B树和B+树)
|
存储 缓存 关系型数据库
MySQL B+树相对于B树的区别及优势:
MySQL B+树相对于B树的区别及优势:
350 0
MySQL B+树相对于B树的区别及优势:
|
存储 算法 NoSQL
【MySQL从入门到精通】【高级篇】(十一)Hash索引、AVL树、B树与B+树对比
上一篇文章我们介绍了 【MySQL从入门到精通】【高级篇】(十)MyISAM的索引方案&&索引的优缺点,这篇文章我们接着来对Hash索引、AVL树、B树以及B+树进行对比。
227 0
【MySQL从入门到精通】【高级篇】(十一)Hash索引、AVL树、B树与B+树对比