基于小波变换的分形信号r指数求解算法matlab仿真

简介: 基于小波变换的分形信号r指数求解算法matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
基于小波变换的分形信号r指数求解算法是一种利用小波变换和分形理论对信号进行分析的方法。下面将详细介绍这种算法的原理和数学公式。

     分形信号是一种具有自相似性的非周期信号,其局部和整体具有相似的特征。在分形信号的分析中,r指数是一个重要的参数,用于描述信号的奇异性和不规则性。r指数越大,表示信号越不规则,奇异性越强。

     小波变换是一种时频分析方法,能够将信号分解成不同尺度的成分,并对每个成分进行分析。基于小波变换的分形信号r指数求解算法利用小波变换对信号进行多尺度分解,提取出信号在不同尺度下的特征,然后利用分形理论对这些特征进行分析,计算出信号的r指数。

具体地,基于小波变换的分形信号r指数求解算法可以分为以下几个步骤:

对信号进行小波变换,得到一系列小波系数。
对每个尺度下的小波系数进行统计分析,计算出该尺度下的分形维数。
对所有尺度下的分形维数进行拟合,得到信号的r指数。
基于小波变换的分形信号r指数求解算法的数学公式主要包括以下几个部分:

小波变换

    对信号f(t)进行小波变换,可以得到一系列小波系数Wf(a,b),其中a表示尺度参数,b表示平移参数。小波变换的数学公式可以表示为:

Wf(a,b)=1a∫f(t)ψ∗(t−ba)dtWf(a,b) = \frac{1}{\sqrt{a}} \int f(t) \psi^*(\frac{t-b}{a}) dtWf(a,b)=a1∫f(t)ψ∗(at−b)dt

其中,ψ(t)是小波基函数,ψ∗(t)是其共轭复数。

分形维数计算

    对每个尺度下的小波系数进行统计分析,可以计算出该尺度下的分形维数。具体地,可以使用盒计数法或功率谱法等方法进行计算。以盒计数法为例,假设将小波系数分成N个盒子,每个盒子的长度为ε,则分形维数D可以用以下公式表示:

D=lim⁡ε→0log⁡N(ε)log⁡(1/ε)D = \lim_{\varepsilon \to 0} \frac{\log N(\varepsilon)}{\log (1/\varepsilon)}D=limε→0log(1/ε)logN(ε)

其中,N(ε)表示盒子数量。

r指数计算

   对所有尺度下的分形维数进行拟合,可以得到信号的r指数。具体地,可以使用最小二乘法等方法进行拟合。以最小二乘法为例,假设分形维数D与尺度参数a之间存在以下关系:

D=Da+rDaD = D_a + r D_aD=Da+rDa

其中,Da表示信号的平均分形维数,r表示信号的r指数。则可以通过最小二乘法拟合出r的值。

    需要注意的是,基于小波变换的分形信号r指数求解算法的具体实现可能会因小波基函数的选择、尺度参数的选取等因素而有所不同。此外,该算法的计算复杂度较高,需要较大的计算资源和时间。

4.部分核心程序

figure;
y_envelope0      = log10(ya0(t));
t_envelope0      = log10(t);      
subplot(131);plot(t_envelope0,y_envelope0,'k'); title('功率谱密度函数的上包络曲线');
hold on;
%进行线性拟合
Func_coff0=polyfit(t_envelope0,y_envelope0,1);
plot(t_envelope0,Func_coff0(1)*t_envelope0+Func_coff0(2),'r'); 
r0 = -Func_coff0(1);

y_envelope1      = log10(ya1(t));
t_envelope1      = log10(t);      
subplot(132);plot(t_envelope1,y_envelope1,'k'); title('功率谱密度函数的上包络曲线');
hold on;
%进行线性拟合
Func_coff1=polyfit(t_envelope1,y_envelope1,1);
plot(t_envelope1,Func_coff1(1)*t_envelope1+Func_coff1(2),'r'); 
r1 = -Func_coff1(1);

y_envelope2      = log10(ya2(t));
t_envelope2      = log10(t);      
subplot(133);plot(t_envelope2,y_envelope2,'k'); title('功率谱密度函数的上包络曲线');
hold on;
%进行线性拟合
Func_coff2=polyfit(t_envelope2,y_envelope2,1);
plot(t_envelope2,Func_coff2(1)*t_envelope2+Func_coff2(2),'r'); 
r2 = -Func_coff2(1);
r  = [r0 r1 r2];
disp('     原始信号r   -10db噪声的r  -20db噪声的r');
r


%下面用论文中的小波算法求解r指数,调用自定义小波计算函数
figure;
[cdv0,tt0,coffs0] = func_wavelet_calculate(signal,13,1);

subplot(231);
plot(tt0,cdv0,'k-o');hold on;
coff0=polyfit(tt0,cdv0,1);
plot(tt0,coff0(1)*tt0+coff0(2),'r'); title('无噪声尺度与小波系数方差');
rr0    = -coff0(1);
delta0 =  coff0(2);
axis([0,13,-10,20]);
subplot(234);
plot(tt0,cdv0,'k-o');title('无噪声尺度与小波系数方差');hold off;
axis([0,13,-10,20]);



[cdv1,tt1,coffs1] = func_wavelet_calculate(signal_10db,13,1);

subplot(232);
plot(tt1(1:7),cdv1(1:7),'k-o');hold on;
coff1=polyfit(tt1(1:7),cdv1(1:7),1);
plot(tt1(1:7),coff1(1)*tt1(1:7)+coff1(2),'r'); title('-10db噪声尺度与小波系数方差');
rr1 = -coff1(1);
delta1 =  coff1(2);
axis([0,10,0,20]);
subplot(235);
plot(tt1,cdv1,'k-o');title('-10db噪声尺度与小波系数方差');
axis([0,13,0,20]);


[cof_new1,signal11] = func_dewavelet_calculate(signal_10db,rr1,delta1,-10,coffs1,13);






[cdv2,tt2,coffs2] = func_wavelet_calculate(signal_20db,13,1);
subplot(233);
plot(tt2(1:5),cdv2(1:5),'k-o');hold on;
coff2=polyfit(tt2(1:5),cdv2(1:5),1);
plot(tt2(1:5),coff2(1)*tt2(1:5)+coff2(2),'r'); title('-10db噪声尺度与小波系数方差');
rr2 = -coff2(1);
delta2 =  coff2(2);
axis([0,7,0,20]);
subplot(236);
plot(tt2,cdv2,'k-o');title('-10db噪声尺度与小波系数方差');
axis([0,13,0,20]);


[cof_new2,signal22] = func_dewavelet_calculate(signal_20db,rr2,delta2,-20,coffs2,13);



rr  =[rr0 rr1 rr2];
disp('     原始信号r   -10db噪声的r  -20db噪声的r');
rr


figure
subplot(221);plot(signal_10db);title('-10db噪声信号');
subplot(223);plot(signal11);    title('-10db噪声滤波以后的信号');

subplot(222);plot(signal_20db);title('-20db噪声信号');
subplot(224);plot(signal22);    title('-20db噪声滤波以后的信号');

clear Func_coff0 Func_coff1 Func_coff2 a0 a1 a2 b0 b1 b2 cdv0 cdv1 cdv2 coff0 coff1 coff2
clear powera0 powera1 powera2 r r0 r1 r2 rr0 rr1 rr2 t t_envelope0 t_envelope1 t_envelope2 tt0 tt1 tt2 ya0 ya1 ya2 
clear y_envelope0 y_envelope1 y_envelope2
相关文章
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
5天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于sift变换的农田杂草匹配定位算法matlab仿真
本项目基于SIFT算法实现农田杂草精准识别与定位,运行环境为Matlab2022a。完整程序无水印,提供详细中文注释及操作视频。核心步骤包括尺度空间极值检测、关键点定位、方向分配和特征描述符生成。该算法通过特征匹配实现杂草定位,适用于现代农业中的自动化防控。
|
3天前
|
机器学习/深度学习 资源调度 算法
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
85 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
7天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
10天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
10天前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
9天前
|
算法 数据安全/隐私保护
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。