【MATLAB】史上最全的11种数字信号滤波去噪算法全家桶

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 【MATLAB】史上最全的11种数字信号滤波去噪算法全家桶

【MATLAB】史上最全的11种数字信号滤波去噪算法全家桶:

https://mbd.pub/o/bread/ZJiYlphx

【MATLAB】史上最全的 18 种信号分解算法全家桶:

https://mbd.pub/o/bread/ZJ6bkplq

【MATLAB】史上最全的9种频谱分析算法全家桶:

https://mbd.pub/o/bread/ZJmVlJ5x

1 【MATLAB】SG滤波算法

SG 滤波算法(Savitzky - Golay 滤波算法)是一种数字信号处理算法,用于对信号进行平滑处理。该算法利用最小二乘法拟合局部数据段,然后用拟合的函数来估计每个数据点的值,从而实现平滑处理。 SG 滤波算法的优点是可以同时实现平滑和去噪,可以有效滤除高频噪声,对于非线性信号也有较好的适应性。此外,该算法计算速度快,不需要频域转换,适用于实时信号处理。 SG 滤波算法的缺点是需要选择合适的窗口大小和多项式阶数,不同的参数会对滤波效果产生影响。此外,该算法对于信号中存在较大幅值的局部突变或者斜率变化较大的段落,可能会产生较大的误差。在实际应用中,SG 滤波算法可以用于信号平滑、去噪、信号分析等领域。

滤波算法示意图

【MATLAB】SG滤波算法:

https://mbd.pub/o/bread/ZJiVk55v

2【MATLAB】T1小波滤波算法

T1小波滤波算法是一种基于小波变换的信号去噪算法。它可以有效地去除信号中的噪声,并保留信号的主要特征。该算法的主要思想是将信号分解为多个不同尺度的小波系数,然后通过对小波系数进行阈值处理来去除噪声。 具体来说,T1小波滤波算法的步骤如下:

  1. 将原始信号进行小波分解,得到多个尺度的小波系数。
  2. 对每个尺度的小波系数进行阈值处理,将小于某个阈值的系数置为0,保留大于等于阈值的系数。
  3. 对处理后的小波系数进行小波重构,得到去噪后的信号。
  4. 重复上述步骤,直到满足停止准则。 T1 小波滤波算法的优点是可以保留信号的主要特征,同时去除噪声,能够有效地处理非平稳信号和非线性信号。缺点是需要选择合适的阈值和停止准则,否则可能会影响信号的重构效果。

滤波算法示意图

【MATLAB】T1小波滤波算法:

https://mbd.pub/o/bread/ZJiYlJxy

3【MATLAB】高斯加权移动平均滤波算法

高斯加权移动平均滤波算法是一种基于加权平均的滤波方法,它可以有效地去除高斯噪声,同时保留信号的主要特征。该算法的主要思想是通过对信号进行加权平均来消除噪声,其中权值是根据高斯分布计算得到的,越接近中心点的权值越大,越远离中心点的权值越小。这样可以使得噪声的影响减小,同时保留信号的主要特征。 具体来说,高斯加权移动平均滤波算法的步骤如下:

  1. 定义一个滤波窗口,包括当前样本点和其周围的若干个点。
  2. 对窗口内的每个点计算其权值,根据高斯分布计算得到,距离当前样本点越远的点权值越小。
  3. 对窗口内的每个点的数值进行加权平均,得到当前样本点的滤波结果。
  4. 将滤波窗口向前移动一个位置,重复上述步骤,直到所有样本点都被处理完毕。高斯加权移动平均滤波算法的优点是可以有效地去除高斯噪声,同时保留信号的主要特征;缺点是需要选择合适的窗口大小和高斯分布参数,否则可能会影响滤波的效果。

滤波算法示意图

【MATLAB】高斯加权移动平均滤波算法:

https://mbd.pub/o/bread/ZJiYlZhw

4【MATLAB】滑动平均滤波算法

滑动平均滤波算法是一种经典的滤波方法,它通过计算信号的移动平均值来消除噪声。该算法的主要思想是对信号进行滑动窗口处理,窗口内的数据进行平均化,以得到平滑后的信号。这样可以有效地去除周期性噪声和高频噪声,同时保留信号的整体趋势。 具体来说,滑动平均滤波算法的步骤如下:

  1. 定义一个滤波窗口,包括当前样本点和其周围的若干个点。
  2. 对窗口内的数据进行平均化,得到当前样本点的滤波结果。
  3. 将滤波窗口向前移动一个位置,重复上述步骤,直到所有样本点都被处理完毕。滑动平均滤波算法的优点是简单易用,计算效率高,可以有效地去除周期性噪声和高频噪声;缺点是可能会对信号的快速变化造成滞后效应,同时窗口大小的选择也会影响滤波效果。

滤波算法示意图

【MATLAB】滑动平均滤波算法:

https://mbd.pub/o/bread/ZJiYlZhx

5【MATLAB】卷积滑动平均滤波算法

卷积滑动平均滤波算法是一种基于卷积操作的滤波方法,它通过对信号进行卷积运算来计算移动平均值,以消除噪声。该算法的主要思想是将滤波窗口的加权系数定义为一个卷积核,对信号进行卷积运算来得到平滑后的信号。这样可以有效地去除周期性噪声和高频噪声,同时保留信号的整体趋势。 具体来说,卷积滑动平均滤波算法的步骤如下:

  1. 定义一个滤波窗口,包括当前样本点和其周围的若干个点。
  2. 将滤波窗口的加权系数定义为一个卷积核。
  3. 对信号和卷积核进行卷积运算,得到当前样本点的滤波结果。
  4. 将滤波窗口向前移动一个位置,重复上述步骤,直到所有样本点都被处理完毕。卷积滑动平均滤波算法的优点是可以有效地去除周期性噪声和高频噪声,同时保留信号的整体趋势;缺点是需要选择合适的卷积核大小和加权系数,否则可能会影响滤波的效果。

滤波算法示意图

【MATLAB】卷积滑动平均滤波算法:

https://mbd.pub/o/bread/ZJiYlZhy

6【MATLAB】滤波器滤波算法

滤波器滤波算法是一种基于数字滤波器的滤波方法,它通过对信号进行滤波器处理来消除噪声。数字滤波器可以分为FIR滤波器和IIR滤波器两种类型,其中FIR滤波器是一种线性相位滤波器,IIR滤波器是一种非线性相位滤波器。这两种滤波器都可以用来对信号进行滤波处理,以消除噪声。 具体来说,滤波器滤波算法的步骤如下:

  1. 定义一个数字滤波器,包括滤波器类型、滤波器参数等。
  2. 对信号进行滤波器处理,得到滤波后的信号。
  3. 对滤波后的信号进行后处理,包括信号放大、平移等操作,以得到最终的滤波结果。滤波器滤波算法的优点是可以根据信号的特点选择不同类型的数字滤波器,以达到最优的滤波效果;缺点是需要对滤波器进行设计和参数调整,复杂度较高,而且滤波器的稳定性和相位响应也需要考虑。

滤波算法示意图

【MATLAB】滤波器滤波算法:

https://mbd.pub/o/bread/ZJiYlZly

7【MATLAB】小波去噪滤波算法

小波去噪滤波算法是一种基于小波变换的滤波方法,它通过对信号进行小波变换来分解信号的频率分量,并根据信号的特点选择合适的阈值处理方法来去除噪声。该算法的主要思想是将信号分解成多个频率分量,根据信号的特点选择合适的阈值处理方法对每个频率分量进行去噪处理,然后将去噪后的频率分量进行合成,得到平滑后的信号。 具体来说,小波去噪滤波算法的步骤如下:

  1. 对信号进行小波分解,得到多个频率分量。
  2. 对每个频率分量进行阈值处理,去除噪声。
  3. 将去噪后的频率分量进行合成,得到平滑后的信号。小波去噪滤波算法的优点是可以有效地去除噪声,同时保留信号的整体趋势;缺点是需要选择合适的小波基和阈值处理方法,否则可能会影响滤波的效果。另外,小波去噪滤波算法对于信号中存在的快速变化的特征可以得到很好的保留,因此在一些需要保留信号快速变化特征的应用场景中,小波去噪滤波算法得到了广泛的应用。

滤波算法示意图

【MATLAB】小波去噪滤波算法:

https://mbd.pub/o/bread/ZJiYlZpq

8【MATLAB】一维信号NLM非局部均值滤波算法

一维信号NLM非局部均值滤波算法是一种基于非局部均值思想的滤波方法,它通过对信号进行分块,计算每个块与其他块之间的相似度,以非局部均值的方式去除噪声。该算法的主要思想是在一定范围内寻找与当前块相似的块,以这些块的非局部均值作为当前块的估计值,以达到去除噪声的效果。 具体来说,一维信号NLM非局部均值滤波算法的步骤如下:

  1. 将信号分成多个块,每个块的大小为w。
  2. 对每个块,计算它与其他块之间的相似度,以此为依据选择与当前块相似的块。
  3. 对选出的块,计算它们的非局部均值。
  4. 将这些非局部均值作为当前块的估计值,以去除噪声。一维信号 NLM 非局部均值滤波算法的优点是可以在一定程度上去除噪声,同时保留信号的边缘和细节特征。缺点是需要计算大量的相似度,算法复杂度较高,而且需要选择合适的窗口大小和块大小以达到最优的滤波效果。此外,该算法对于一些信号存在快速变化和较大噪声的情况下,效果可能会有所下降。

滤波算法示意图

【MATLAB】一维信号NLM非局部均值滤波算法:

https://mbd.pub/o/bread/ZJiYlZpr

9【MATLAB】移动中位数滤波算法

移动中位数滤波算法是一种基于中位数的滤波方法,它通过对信号进行滑动窗口处理,每次取窗口内的中位数作为当前点的估计值,以去除噪声。该算法的主要思想是利用中位数的鲁棒性,对信号中的噪声进行有效的消除。 具体来说,移动中位数滤波算法的步骤如下:

  1. 定义一个滑动窗口大小,窗口大小通常为奇数。
  2. 将窗口依次向前移动,每次取窗口内的中位数作为当前点的估计值。
  3. 重复步骤 2,直到处理完整个信号。移动中位数滤波算法的优点是可以有效地去除噪声,同时保留信号的整体趋势;缺点是对于一些信号存在快速变化的情况下,效果可能会有所下降。此外,该算法也需要选择合适的窗口大小以达到最优的滤波效果。

滤波算法示意图

【MATLAB】移动中位数滤波算法:

https://mbd.pub/o/bread/ZJiYlphu

10【MATLAB】卡尔曼滤波算法

卡尔曼滤波是一种线性最优滤波器,它建立在线性代数和隐马尔可夫模型(hidden Markov model)上。其基本动态系统可以用一个马尔可夫链表示,该马尔可夫链建立在一个被高斯噪声(即正态分布的噪声)干扰的线性算子上的。随着离散时间的每一个增加,这个线性算子就会作用在当前状态上,产生一个新的状态,并也会带入一些噪声,同时系统的一些已知的控制器的控制信息也会被加入。

在实际应用中,目标的动态信息往往存在噪声,卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。

滤波算法示意图

【MATLAB】卡尔曼滤波算法:

https://mbd.pub/o/bread/ZJ6bkphv

11【MATLAB】HANTS滤波算法

HANTS滤波算法是一种时间序列谐波分析方法,它综合了平滑和滤波两种方法,能够充分利用遥感图像存在时间性和空间性的特点,将其空间上的分布规律和时间上的变化规律联系起来。该算法在进行影像重构时,充分考虑了植被生长周期性和数据本身的双重特点,能够用代表不同生长周期的植被频率曲线重新构建时序NDVI影像,真实反映植被的周期性变化规律。

HANTS滤波算法对快速傅立叶变换进行了改进,具有更大的灵活性。具体来说,它可以是不等时间间隔的影像,同时对时序图像的要求不象快速傅立叶变换(FFT)那么严格。该算法的核心算法是最小二乘法和傅立叶变换。通过最小二乘法的迭代拟合去除时序NDVI值中受云污染影响较大的点,借助于傅立叶在时间域和频率域的正反变换实现曲线的分解和重构,从而达到时序遥感影像去云重构的目的。

滤波算法示意图

【MATLAB】HANTS滤波算法:

https://mbd.pub/o/bread/ZJ6bkphw



目录
相关文章
|
17天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
11天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
11天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
16天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
16天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
18天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现