【MATLAB】WOA鲸鱼算法优化的VMD信号分解算法

简介: 【MATLAB】WOA鲸鱼算法优化的VMD信号分解算法


1 基本定义

WOA-VMD是一种将信号分解成一系列模态函数的方法,它结合了启发式优化算法鲸鱼优化算法(WOA)和变分模态分解(VMD)算法。

VMD是一种基于变分原理的数据分解方法,能够将信号分解成一系列的模态函数。每个模态函数代表了信号的一个特定频率范围的成分,这些成分可以被认为是信号的不同模态。通过对这些模态函数进行重构,可以实现信号的去噪和分析。

WOA是一种启发式优化算法,灵感来源于鲸鱼的迁徙行为。它通过模拟鲸鱼的搜索和迁徙过程来寻找最优解。WOA具有全局收敛性和较强的搜索能力,适用于各种优化问题。

在WOA-VMD中,首先输入待去噪的信号,然后初始化VMD的参数,包括迭代次数、鲸鱼算法的参数等。使用鲸鱼算法优化VMD的参数,得到最优的模态函数。对得到的模态函数进行重构,得到去噪后的信号。

VMD算法的基本原理可以表示为一个约束变分问题的求解,构造的约束变分问题表示为:uK为VMD分解后的第K个IMF分量;ωK为第K个IMF分量的瞬时频率;δ(t)为狄拉克函数;∗为卷积符号; 引入二次惩罚因子α和拉格朗日乘子λ使变分问题不受约束,构造的增广拉格朗日函数如下:采用乘子交替方向算法交替更新得到K个IMF及其对应的中心频率。

K和α影响着VMD的分解性能。若设置的K较小,则信号的多个分量可能同时包含在1个模态中;若K较大,则会导致1个分量包含在多个模态中,迭代得到的中心频率也会重叠。对α而言,若α很大,则带宽限制就会很窄,从而导致有用的频率成分被消除;反之,冗余频率成分将会被保留下来。

因此,本文提出使用鲸鱼优化算法来优化确定最佳参数组合 (K,α),以达到更好的去噪效果。

WOA-VMD算法的具体步骤如下:

  1. 初始化:给定待去噪的信号x(t),设定VMD的参数,包括迭代次数K、惩罚因子α、拉格朗日乘子λ以及鲸鱼算法的参数,如种群大小、搜索次数等。
  2. 构建目标函数:根据原始信号和VMD的参数,构建一个目标函数,该函数用于评估去噪效果的好坏。目标函数可以包括重构误差、信号峰值等指标。
  3. 初始化模态函数:根据原始信号和VMD的参数,初始化模态函数集合{u1(t), u2(t), ..., uk(t)}。每个模态函数代表了信号的一个特定频率范围的成分。
  4. 优化参数:使用鲸鱼算法,根据目标函数,对VMD的参数进行优化。鲸鱼算法通过模拟鲸鱼的搜索和迁徙过程来寻找最优解。在每次迭代中,根据鲸鱼的搜索经验更新最优解,并判断是否满足停止条件,如达到最大迭代次数或目标函数值小于设定的阈值。
  5. 更新模态函数:根据优化后的VMD参数,更新模态函数集合{u1(t), u2(t), ..., uk(t)}。
  6. 重构信号:根据更新后的模态函数集合,重构去噪后的信号y(t)。
  7. 判断停止条件:判断是否满足停止条件,如达到最大迭代次数或目标函数值小于设定的阈值。如果满足停止条件,则输出去噪后的信号y(t);否则,返回步骤4继续迭代优化。

通过以上步骤,WOA-VMD算法可以在全局范围内寻找最优的模态函数和VMD参数,从而得到更好的去噪效果。相比传统的VMD算法,WOA-VMD算法具有更强的全局搜索能力和更好的鲁棒性,可以更好地处理复杂的信号去噪问题。

除了上述提到的步骤,WOA-VMD算法还有一些关键点需要注意:

  1. 初始化VMD参数:VMD的参数包括迭代次数K、惩罚因子α、拉格朗日乘子λ以及模态函数的中心频率。这些参数的初始化对去噪效果有很大的影响。在WOA-VMD算法中,可以使用鲸鱼算法来优化这些参数,以达到更好的去噪效果。
  2. 构建目标函数:目标函数是评估去噪效果好坏的指标。在WOA-VMD算法中,可以根据重构误差、信号峰值等指标来构建目标函数。通过优化目标函数,可以使得WOA-VMD算法在全局范围内寻找最优的模态函数和VMD参数。
  3. 更新模态函数:在每次迭代中,使用优化后的VMD参数更新模态函数集合{u1(t), u2(t), ..., uk(t)}。更新模态函数的过程包括中心频率的更新和模态函数的更新。中心频率的更新可以根据鲸鱼算法的搜索经验进行,模态函数的更新可以根据变分原理进行。
  4. 重构信号:根据更新后的模态函数集合重构去噪后的信号y(t)。重构信号的过程可以通过卷积和积分操作实现。
  5. 判断停止条件:判断是否满足停止条件,如达到最大迭代次数或目标函数值小于设定的阈值。如果满足停止条件,则输出去噪后的信号y(t);否则,返回步骤4继续迭代优化。

通过以上步骤和关键点,WOA-VMD算法可以在全局范围内寻找最优的模态函数和VMD参数,从而得到更好的去噪效果。相比传统的VMD算法,WOA-VMD算法具有更强的全局搜索能力和更好的鲁棒性,可以更好地处理复杂的信号去噪问题。

2 出图效果

附出图效果如下:

附视频教程操作:

3 代码获取

【MATLAB】WOA鲸鱼算法优化的VMD信号分解算法

https://mbd.pub/o/bread/ZZaZlJZx

【MATLAB】MPA 海洋捕食者算法优化的 VMD 信号分解算法

https://mbd.pub/o/bread/ZZaXm5ht

【MATLAB】GWO 灰狼算法优化的 VMD 信号分解算法

https://mbd.pub/o/bread/ZZaXmJxu

【MATLAB】GA 遗传算法优化的 VMD 信号分解算法

https://mbd.pub/o/bread/ZZaVm5xs

【MATLAB】ALO蚁狮算法优化的VMD信号分解算法

https://mbd.pub/o/bread/ZZaTlJly

【MATLAB】Go_Emd信号分解算法

https://mbd.pub/o/bread/ZZWclp5u

【MATLAB】极点对称模态ESMD信号分解算法

https://mbd.pub/o/bread/ZZWcmppv

【MATLAB】5 种高创新性的信号分解算法

https://mbd.pub/o/bread/ZJ6bkplp

【MATLAB】13 种通用的信号分解算法

https://mbd.pub/o/bread/mbd-ZJWZmptt

【MATLAB】史上最全的 18 种信号分解算法全家桶

https://mbd.pub/o/bread/ZJ6bkplq

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~

目录
相关文章
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
439 0
|
5月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
286 3
|
4月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
232 8
|
4月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
255 8
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
4月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
5月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
373 2
|
4月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
233 0
|
4月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
211 0
|
5月前
|
机器学习/深度学习 存储 算法
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
225 0