数据结构的复杂度

简介: 数据结构的复杂度

> 作者简介:დ旧言~,目前大一,现在学习Java,c,c++,Python等

> 座右铭:松树千年终是朽,槿花一日自为荣。

> 望小伙伴们点赞👍收藏✨加关注哟💕💕

🌟前言

       我们国家是一个按劳分配的国家,多劳多得,少劳少得,不劳不得。这我我们不难看出,一个人的付出和收获是成正比的。而我们写代码也是如此,如果我们写代码复杂程度比较大,那这段代码占用内存也大。那代码的复杂度咋计算捏,咱们先抛出问题,相信学完本章节对于这个问题可以迎刃而解,话不多说,大家跟上我的脚步,一起学习——《数据结构的复杂度》。

🌙主体

今天的主要任务是能计算算法的时间复杂度和空间复杂度,并且常见时间复杂度以及复杂度oj练习能掌握熟练。

🌠算法效率

       我们知道每一道编程题有多种解法,因此每种解法的效率也是不同的,比如我们常见的冒泡法和快排,它们都能解决排序问题,而它们算法效率却相差甚远,而算法效率该如何衡量呢?这里我们就引进时间和空间两个维度来衡量即时间复杂度和空间复杂度时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算 机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度

🌠时间复杂度

       时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数符f(x),它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

       找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

如:F(N) = N² + N + 20 ,计算的是程序运行的次数。

       可能大家一听到要学函数,我丢,时间复杂度和数学知识有一定的挂钩,大家一听菜菜捞捞,其实都是高中数学一些基础的知识,不慌不忙。

💤O的渐进表示法

推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
  int count = 0;
  for (int i = 0; i < N; ++i)
  {
    for (int j = 0; j < N; ++j)
    {
      ++count;
    }
  }
  for (int k = 0; k < 2 * N; ++k)
  {
    ++count;
  }
  int M = 10;
  while (M--)
  {
    ++count;
  }
  printf("%d\n", count);
}

      实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

4.如果算的是一个常数那就用O(1)表示

💤举个栗子

💭例1
// 计算Func2的时间复杂度?
void Func2(int N)
{
  int count = 0;
  for (int k = 0; k < 2 * N; ++k)
  {
    ++count;
  }
  int M = 10;
  while (M--)
  {
    ++count;
  }
  printf("%d\n", count);
}

这里F(N) = 2*N+10,O的渐进表示法为:O(N)

💭例2
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
  int count = 0;
  for (int k = 0; k < M; ++k)
  {
    ++count;
  }
  for (int k = 0; k < N; ++k)
  {
    ++count;
  }
  printf("%d\n", count);
}

当M>N时:此时N为常数,O(M)

当M<N时:此时M为常数,O(N)

💭例3
// 计算Func4的时间复杂度?
void Func4(int N)
{
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

此时F(N) = 100,O的渐进表示法为:O(1)

 💭例4
// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

这个头文件本质上是一个str字符数组找一个数组,因此需要遍历数组,O的渐进表示法为:O(N)

 💭例5
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

这里是一个等差数列,0+1+2+3+4+...+N-1,F(N) = (N-1)*N/2 = N² / 2 + N/2,采用抓大头的方法,O的渐进表示法为:O(N²)

💭例6
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
  assert(a);
  int begin = 0;
  int end = n - 1;
  // [begin, end]:begin和end是左闭右闭区间,因此有=号
  while (begin <= end)
  {
    int mid = begin + ((end - begin) >> 1);
    if (a[mid] < x)
      begin = mid + 1;
    else if (a[mid] > x)
      end = mid - 1;
    else
      return mid;
  }
  return -1;
}

这个是一个二分查找法,我们知道查找一次元素变为 N/2,类推元素个数变化

N/2,N/2/2,N/2/2/2...,1

假设查找需要X,所以 2^X = N,所以

一般我们写成logN

💭例7
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
  if (0 == N)
    return 1;
  return Fac(N - 1) * N;
}

我们知道每调用一次函数都在栈开辟空间,每使用一次会自动销毁,因此即使函数中有递归但还是调用一次,所以使用一次函数,调用一次,O的渐进表示法为:O(N)

💭例8
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
  if (N < 3)
    return 1;
  return Fib(N - 1) + Fib(N - 2);
}

🌠空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度度。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法

💤举个栗子

💭例1
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
  assert(a);
  for (size_t end = n; end > 0; --end)
  {
    int exchange = 0;
    for (size_t i = 1; i < end; ++i)
    {
      if (a[i - 1] > a[i])
      {
        Swap(&a[i - 1], &a[i]);
        exchange = 1;
      }
    }
    if (exchange == 0)
      break;
  }
}

这里有三个变量  end,exchange,i。用大O渐进法表示为:O(1)

💭例2
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
  if (n == 0)
    return NULL;
  long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
  fibArray[0] = 0;
  fibArray[1] = 1;
  for (int i = 2; i <= n; ++i)
  {
    fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
  }
  return fibArray;
}

这里开辟(N+1)个空间,用大O渐进法表示为:O(N)

💭例3
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
  if (N == 0)
    return 1;
  return Fac(N - 1) * N;
}

我们知道每调用一次函数都在栈开辟空间,每使用一次会自动销毁,因此即使函数中有递归但还是调用一次,所以使用一次函数,调用一次,O的渐进表示法为:O(N)

🌠拓展

常见复杂度对比:

🌟结束语

今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小说手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。

目录
相关文章
|
7月前
|
机器学习/深度学习 存储 算法
【算法与数据结构】复杂度深度解析(超详解)
【算法与数据结构】复杂度深度解析(超详解)
【算法与数据结构】复杂度深度解析(超详解)
|
7月前
|
存储 算法
数据结构与算法:复杂度
数据结构: 数据结构是用于存储和组织数据的方式,以便可以有效地访问和修改数据。不同的数据结构适用于不同类型的应用,并且具体的数据结构可以大幅影响程序的性能。数据结构分为两大类:线性数据结构和非线性数据结构。 算法: 算法是完成特定任务的一系列操作步骤,是解决问题的明确规范。算法的效率通常通过时间复杂度和空间复杂度来评估,即算法执行所需的时间和空间资源。
|
2月前
|
算法
数据结构(复杂度)
数据结构(复杂度)
29 0
|
2月前
|
存储 机器学习/深度学习 算法
探索数据结构:入门及复杂度的解锁
探索数据结构:入门及复杂度的解锁
|
4月前
|
机器学习/深度学习 存储 算法
【初阶数据结构篇】时间(空间)复杂度
复杂度是计算机科学中的一个基础概念,它帮助我们理解和评估算法的效率,对于算法设计和优化至关重要。
49 2
【初阶数据结构篇】时间(空间)复杂度
|
4月前
|
算法
【初阶数据结构】复杂度算法题篇
该方法基于如下的事实:当我们将数组的元素向右移动 k 次后,尾部 kmodn 个元素会移动至数组头部,其余元素向后移动 kmodn 个位置。
31 1
|
5月前
|
机器学习/深度学习 存储 算法
【数据结构】算法的复杂度
算法的时间复杂度和空间复杂度
88 1
【数据结构】算法的复杂度
|
4月前
|
存储 算法
【数据结构】复杂度(长期维护)
【数据结构】复杂度(长期维护)
|
7月前
|
存储 算法 C语言
数据结构与算法②(复杂度相关OJ)(六道数组OJ题)(上)
数据结构与算法②(复杂度相关OJ)(六道数组OJ题)
61 2
|
6月前
|
算法 搜索推荐
数据结构和算法——表排序(算法概述、物理排序、复杂度分析,包含详细清晰图示过程)
数据结构和算法——表排序(算法概述、物理排序、复杂度分析,包含详细清晰图示过程)
54 0