C# | 线性回归算法的实现,只需采集少量数据点,即可拟合整个数据集

简介: 什么是线性回归呢?简单来说,线性回归是一种用于建立两个变量之间线性关系的统计方法。在我们的软件开发中,线性回归可以应用于数据分析、预测和优化等领域。什么情况下会用到线性回归呢?线性回归可以用于探索数据之间的关系,可以用于预测未来的趋势。通过少量的数据点就能得到一个可以代表整个数据集的模型。换句话说,只需要采集少量的数据点,就可以拟合出整个数据集。

image.png

C#线性回归算法的实现

@[toc]

前言

  1. 什么是线性回归呢?
    简单来说,线性回归是一种用于建立两个变量之间线性关系的统计方法。在我们的软件开发中,线性回归可以应用于数据分析、预测和优化等领域。

  2. 什么情况下会用到线性回归呢?
    线性回归可以用于探索数据之间的关系,可以用于预测未来的趋势。通过少量的数据点就能得到一个可以代表整个数据集的模型。换句话说,只需要采集少量的数据点,就可以拟合出整个数据集。

示例代码

现在让我们来看一下示例代码:

    /// <summary>
    /// 线性回归类,用于计算一组二维坐标点的线性回归方程(y = kx + b)
    /// </summary>
    public class LinearRegression
    {
   
   
        /// <summary>
        /// 直线斜率
        /// </summary>
        public double Slope {
   
    get; }

        /// <summary>
        /// 直线截距
        /// </summary>
        public double Intercept {
   
    get; }

        /// <summary>
        /// 构造线性回归对象
        /// </summary>
        /// <param name="data">一组坐标点</param>
        /// <exception cref="ArgumentException">当数据为空或数据点个数少于2个时抛出异常</exception>
        public LinearRegression(PointF[] data)
        {
   
   
            if (data == null || data.Length < 2)
            {
   
   
                throw new ArgumentException("Data can not be null or the number of data points must be at least 2.");
            }

            double sumX = 0;
            double sumY = 0;
            double sumXY = 0;
            double sumX2 = 0;
            int n = data.Length;

            foreach (PointF point in data)
            {
   
   
                sumX += point.X;
                sumY += point.Y;
                sumXY += point.X * point.Y;
                sumX2 += point.X * point.X;
            }

            double avgX = sumX / n;
            double avgY = sumY / n;

            Slope = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX);
            Intercept = avgY - Slope * avgX;
        }

        /// <summary>
        /// 根据 x 坐标计算对应的 y 坐标
        /// </summary>
        /// <param name="x">x 坐标</param>
        /// <returns>y 坐标</returns>
        public double GetY(double x)
        {
   
   
            return Slope * x + Intercept;
        }

        /// <summary>
        /// 根据 y 坐标计算对应的 x 坐标
        /// </summary>
        /// <param name="y">y 坐标</param>
        /// <returns>x 坐标</returns>
        public double GetX(double y)
        {
   
   
            return (y - Intercept) / Slope;
        }
    }

我们定义了一个名为LinearRegression的类。这个类有两个公共属性,分别代表线性回归的斜率截距。我们还定义了一个构造函数,它接受一个PointF类型的数组作为输入,用于计算斜率和截距。

此外还定义了两个方法,分别用于根据x坐标计算对应的y坐标根据y坐标计算对应的x坐标

实现思路

线性回归算法的思路是这样的:

  1. 对于输入的数据点数组,我们首先计算出它们的平均值。
  2. 计算每个数据点与平均值的差值,并将这些差值乘以对应的x和y坐标。
  3. 我们将这些乘积相加并除以对应的坐标的平方和,即可得到斜率。
  4. 通过平均值和斜率的计算结果得出截距。

下面,让我们来看一下重要的代码段:

double sumX = 0;
double sumY = 0;
double sumXY = 0;
double sumX2 = 0;
int n = data.Length;

foreach (PointF point in data)
{
   
   
    sumX += point.X;
    sumY += point.Y;
    sumXY += point.X * point.Y;
    sumX2 += point.X * point.X;
}

double avgX = sumX / n;
double avgY = sumY / n;

Slope = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX);
Intercept = avgY - Slope * avgX;

通过foreach循环遍历每一个数据点,并计算出所有需要的变量。接着,我们计算出斜率和截距,并将其分别赋值给类的属性。最后,我们就可以使用GetY和GetX方法来计算任意坐标对应的值了。

测试结果

编写测试代码如下:

    [TestClass]
    public class LinearRegressionTests
    {
   
   
        [TestMethod]
        public void TestLinearRegression()
        {
   
   
            // 构造测试数据
            PointF[] data = new PointF[5]
            {
   
   
                new PointF(1, 1),
                new PointF(2, 3),
                new PointF(3, 5),
                new PointF(4, 7),
                new PointF(5, 9)
            };

            // 构造线性回归对象
            LinearRegression lr = new LinearRegression(data);

            // 验证直线斜率和截距是否正确
            Assert.AreEqual(2, lr.Slope, 0.0001);
            Assert.AreEqual(-1, lr.Intercept, 0.0001);

            // 验证 GetY 方法是否正确计算 y 值
            Assert.AreEqual(1, lr.GetY(1), 0.0001);
            Assert.AreEqual(3, lr.GetY(2), 0.0001);
            Assert.AreEqual(5, lr.GetY(3), 0.0001);
            Assert.AreEqual(7, lr.GetY(4), 0.0001);
            Assert.AreEqual(9, lr.GetY(5), 0.0001);

            // 验证 GetX 方法是否正确计算 x 值
            Assert.AreEqual(1, lr.GetX(1), 0.0001);
            Assert.AreEqual(2, lr.GetX(3), 0.0001);
            Assert.AreEqual(3, lr.GetX(5), 0.0001);
            Assert.AreEqual(4, lr.GetX(7), 0.0001);
            Assert.AreEqual(5, lr.GetX(9), 0.0001);
        }
    }

测试结果:
image.png


结束语

通过本章的代码可以轻松实现线性回归算法。如果您觉得本文对您有所帮助,请不要吝啬您的点赞和评论,提供宝贵的反馈和建议,让更多的读者受益。

相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
"拥抱AI规模化浪潮:从数据到算法,解锁未来无限可能,你准备好迎接这场技术革命了吗?"
【10月更文挑战第14天】本文探讨了AI规模化的重要性和挑战,涵盖数据、算法、算力和应用场景等方面。通过使用Python和TensorFlow的示例代码,展示了如何训练并应用一个基本的AI模型进行图像分类,强调了AI规模化在各行业的广泛应用前景。
24 5
|
17天前
|
存储 算法 C#
C#哈希查找算法
C#哈希查找算法
|
17天前
|
算法 C# 索引
C#二分查找算法
C#二分查找算法
|
4天前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
12 0
|
14天前
|
人工智能 算法 前端开发
无界批发零售定义及无界AI算法,打破传统壁垒,累积数据流量
“无界批发与零售”是一种结合了批发与零售的商业模式,通过后端逻辑、数据库设计和前端用户界面实现。该模式支持用户注册、登录、商品管理、订单处理、批发与零售功能,并根据用户行为计算信用等级,确保交易安全与高效。
|
14天前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
18天前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
22 0
|
6月前
|
开发框架 前端开发 .NET
C#编程与Web开发
【4月更文挑战第21天】本文探讨了C#在Web开发中的应用,包括使用ASP.NET框架、MVC模式、Web API和Entity Framework。C#作为.NET框架的主要语言,结合这些工具,能创建动态、高效的Web应用。实际案例涉及企业级应用、电子商务和社交媒体平台。尽管面临竞争和挑战,但C#在Web开发领域的前景将持续拓展。
183 3
|
18天前
|
安全 C# 数据安全/隐私保护
实现C#编程文件夹加锁保护
【10月更文挑战第16天】本文介绍了两种用 C# 实现文件夹保护的方法:一是通过设置文件系统权限,阻止普通用户访问;二是使用加密技术,对文件夹中的文件进行加密,防止未授权访问。提供了示例代码和使用方法,适用于不同安全需求的场景。