【C++】引用之带你“消除”C语言版数据结构教材的一些困惑(虽然是C++的内容,但是强烈建议正在学习数据结构的同学点进来看看)

简介: 【C++】引用之带你“消除”C语言版数据结构教材的一些困惑(虽然是C++的内容,但是强烈建议正在学习数据结构的同学点进来看看)

前言

不知道你有没有这样的经历,在学习数据结构的时候,教材中有一个地方总是搞不明白,如下图:

  • 我记得当时我问过老师:《这是引用,你只要记得只要这个值被改变了,就加上它&》

我也没有继续探索,导致我数据结构阶段虽然考试成绩还行,但是还是😭蒙蒙的状态😭

直到今天,我学习了引用,我才知道为什么要这么用


🌐🌐🌐希望这篇文章可以让遇到同样困惑的你得到解答🌐🌐🌐

🔯那就让我们赶紧进入引用的学习吧🔯


欢迎大家📂收藏📂以便未来做题时可以快速找到思路,巧妙的方法可以事半功倍。

=========================================================================

GITEE相关代码:🌟fanfei_c的仓库🌟

=========================================================================


1.引用的概念

引用是给已存在变量取了一个别名。

编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间

比如:孙悟空,别名齐天大圣、美猴王等等,这些别名都指的是孙悟空。

用法:

void TestRef()
{
  int a = 10;
  int& ra = a;//<====定义引用类型
  printf("%p\n", &a);
  printf("%p\n", &ra);
}

我们说引用与它引用的变量共用同一快内存空间,那么他们的地址就是相同的,如图:

注意:引用类型必须和引用实体时同种类型的。


2.引用的特性

  • 引用在定义时必须初始化
  • 一个变量可以有多个引用
  • 引用一旦引用一个实体,再不能引用其他实体(引用不能改变指向)

了解了以上三条特性,请思考:引用能够替代指针么?

在C++中,引用不能替代指针,因为引用不能改变指向,而指针可以。

在JAVA中,引用可以改变指向。

有关常引用:

void TestConstRef()
{
  const int a = 10;
  //int& ra = a; // 该语句编译时会出错,a为常量
  const int& ra = a;
  // int& b = 10; // 该语句编译时会出错,b为常量
  const int& b = 10;
  double d = 12.34;
  //int& rd = d; // 该语句编译时会出错,类型不同
  const int& rd = d;
}

👀如果上面的例子你有疑问,下面是疑惑解答👀

1-2、4行:我们知道常变量是不可修改的,既然常变量不可修改,我们将常变量取别名就失去了引用的意义和价值。

3、5行:这里ra为常引用,既然a是常变量,那么我们将常引用与之匹配不就刚好可以了么。

7行:略。

8行:我们知道将双精度浮点型赋值给整型会发生截断,但类型转换时,底层不是直接将自身的类型改变,而是会生成一个临时变量,此时这个临时变量具有常属性,所以此时常引用rd就可以指向d了。


3.引用的使用场景

1.做参数

void Swap(int& left, int& right)
{
  int temp = left;
  left = right;
  right = temp;
}
int main()
{
  int a, b;
  Swap(a, b);
  return 0;
}

这也是数据结构教材中的用法。


2.做返回值

int& Count()
{
  static int n = 0;
  n++;
  // ...
  return n;
}

这里我们着重讨论一下做返回值的用法:

细心的同学应该发下了这里n定义为静态变量了。


🚀请思考下为什么会这样做🚀


我们观察下这段代码,这里返回的是n的引用。

假设不加static修饰n:

  • 我们知道引用就相当于它本身,地址也是同一块空间。
  • 当函数栈帧结束,出了作用域,返回对象n就销毁了,那返回n的引用就相当于返回的是已被销毁的那块地址的值,这个值是不确定的,因为已经还给操作系统了。
  • 所以这里我们加上static修饰,使n存储在静态区,栈帧结束也不会被销毁,此时返回n的引用也就没有问题了。

另外:引用做返回值,可以修改引用对象。

int& Slat(SL* ps, int pos)
{
  return ps->a[pos];
}
int main()
{
  SL s;
  //...
  Slat(&s, 3) = 10;
  for (int i = 0; i < s.size; i++)
  {
    Slat(&s, i)++;
  }
  return 0;
}

如果没有引用,就会报错。

因为如果没引用,Slat(&s,3)或Slat(&s,i)返回值是常数,常量为右值不可修改。


3.我们再来看另一个问题


🚀下面的代码输出什么结果,为什么🚀

int& Add(int a, int b)
{
  int c = a + b;
  return c;
}
int main()
{
  int& ret = Add(1, 2);
  Add(3, 4);
  cout << "Add(1, 2) is :" << ret << endl;
  return 0;
}

先看结果:

这段代码启示我们空间是重复利用的

函数栈帧创建又销毁,又创建又销毁,ret始终都指向那同一个位置,所以最后值一定是最后改变的7而不是3。

总结下:如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用引用返回,如果已经还给系统了,则必须使用传值返回。


4.传值、传引用效率比较

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低

#include <time.h>
struct A { int a[10000]; };
void TestFunc1(A a) {}
void TestFunc2(A& a) {}
void TestRefAndValue()
{
  A a;
  // 以值作为函数参数
  size_t begin1 = clock();
  for (size_t i = 0; i < 10000; ++i)
    TestFunc1(a);
  size_t end1 = clock();
  // 以引用作为函数参数
  size_t begin2 = clock();
  for (size_t i = 0; i < 10000; ++i)
    TestFunc2(a);
  size_t end2 = clock();
  // 分别计算两个函数运行结束后的时间
  cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;
  cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}

运行结果:


5.引用和指针的区别

在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间

int main()
{
  int a = 10;
  int& ra = a;
  cout << "&a = " << &a << endl;
  cout << "&ra = " << &ra << endl;
  return 0;
}

运行结果:

但实际上:在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。

底层中没有引用概念,和指针一样都是汇编代码实现的。

我们来看下引用和指针的汇编代码对比:


总结下引用和指针的不同点:

  1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
  2. 引用在定义时必须初始化,指针没有要求。
  3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体。
  4. 没有NULL引用,但有NULL指针。
  5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)。
  6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小。
  7. 有多级指针,但是没有多级引用。
  8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理。
  9. 引用比指针使用起来相对更安全,注意不是绝对安全 。

看到这里,你一定理解了数据结构教材上让你蒙蒙的&符号了吧


=========================================================================

如果你对该系列文章有兴趣的话,欢迎持续关注博主动态,博主会持续输出优质内容

🍎博主很需要大家的支持,你的支持是我创作的不竭动力🍎

🌟~ 点赞收藏+关注 ~🌟

=========================================================================

目录
相关文章
|
1月前
|
存储 算法 C++
【C++数据结构——查找】二分查找(头歌实践教学平台习题)【合集】
二分查找的基本思想是:每次比较中间元素与目标元素的大小,如果中间元素等于目标元素,则查找成功;顺序表是线性表的一种存储方式,它用一组地址连续的存储单元依次存储线性表中的数据元素,使得逻辑上相邻的元素在物理存储位置上也相邻。第1次比较:查找范围R[0...10],比较元素R[5]:25。第1次比较:查找范围R[0...10],比较元素R[5]:25。第2次比较:查找范围R[0..4],比较元素R[2]:10。第3次比较:查找范围R[3...4],比较元素R[3]:15。,其中是顺序表中元素的个数。
137 68
【C++数据结构——查找】二分查找(头歌实践教学平台习题)【合集】
|
1月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
142 77
|
2天前
|
定位技术 C语言
c语言及数据结构实现简单贪吃蛇小游戏
c语言及数据结构实现简单贪吃蛇小游戏
|
1月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
59 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
1月前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
43 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
1月前
|
算法 C++
【C++数据结构——查找】二叉排序树(头歌实践教学平台习题)【合集】
【数据结构——查找】二叉排序树(头歌实践教学平台习题)【合集】 目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果: 任务描述 本关任务:实现二叉排序树的基本算法。 相关知识 为了完成本关任务,你需要掌握:二叉树的创建、查找和删除算法。具体如下: (1)由关键字序列(4,9,0,1,8,6,3,5,2,7)创建一棵二叉排序树bt并以括号表示法输出。 (2)判断bt是否为一棵二叉排序树。 (3)采用递归方法查找关键字为6的结点,并输出其查找路径。 (4)分别删除bt中关键
53 11
【C++数据结构——查找】二叉排序树(头歌实践教学平台习题)【合集】
|
20天前
|
搜索推荐 C语言
数据结构(C语言)之对归并排序的介绍与理解
归并排序是一种基于分治策略的排序算法,通过递归将数组不断分割为子数组,直到每个子数组仅剩一个元素,再逐步合并这些有序的子数组以得到最终的有序数组。递归版本中,每次分割区间为[left, mid]和[mid+1, right],确保每两个区间内数据有序后进行合并。非递归版本则通过逐步增加gap值(初始为1),先对单个元素排序,再逐步扩大到更大的区间进行合并,直至整个数组有序。归并排序的时间复杂度为O(n*logn),空间复杂度为O(n),且具有稳定性,适用于普通排序及大文件排序场景。
|
1月前
|
存储 人工智能 算法
【C++数据结构——图】最短路径(头歌教学实验平台习题) 【合集】
任务描述 本关任务:编写一个程序,利用Dijkstra算法,实现带权有向图的最短路径。 相关知识 为了完成本关任务,你需要掌握:Dijkst本关任务:编写一个程序,利用Dijkstra算法,实现带权有向图的最短路径。为了完成本关任务,你需要掌握:Dijkstra算法。带权有向图:该图对应的二维数组如下所示:Dijkstra算法:Dijkstra算法是指给定一个带权有向图G与源点v,求从v到G中其他顶点的最短路径。Dijkstra算法的具体步骤如下:(1)初始时,S只包含源点,即S={v},v的距离为0。
58 15
|
1月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
48 12
|
1月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
46 10