Python 教程之 Django(7)Django 模型

简介: Python 教程之 Django(7)Django 模型

Django模型是Django用于创建表,其字段和各种约束的内置功能。简而言之,Django模型是与Django一起使用的数据库的SQL。SQL(结构化查询语言)很复杂,涉及许多不同的查询,用于创建,删除,更新或与数据库相关的任何其他内容。Django模型简化了任务并将表格组织成模型。通常,每个模型都映射到单个数据库表。

本文将介绍如何使用Django模型方便地将数据存储在数据库中。此外,我们可以使用Django的管理面板来创建,更新,删除或检索模型的字段以及各种类似的操作。Django模型提供简单性,一致性,版本控制和高级元数据处理。模型的基础知识包括 –

  • 每个模型都是一个Python类,它子类化了django.db模型。
  • 模型的每个属性都表示一个数据库字段。
  • 有了所有这些,Django为您提供了一个自动生成的数据库访问API。

例–

from django.db import models
# 在此处创建模型。
class GeeksModel(models.Model):
  title = models.CharField(max_length = 200)
  description = models.TextField()

Django将Django模型中定义的字段映射到数据库的表字段中,如下所示。

image.png


使用 Django 模型

要使用Django模型,需要有一个项目和一个应用程序在其中工作。启动应用后,可以在应用/模型中创建模型.py。在开始使用模型之前,让我们检查一下如何启动项目并创建一个名为 geeks.py


创建模型

语法

from django.db import models
class ModelName(models.Model):
        field_name = models.Field(**options)

要创建模型,请在极客/模型中.py输入代码,

# 从内置库导入标准Django模型
from django.db import models
# 声明一个名为“GeeksModel”的新模型
class GeeksModel(models.Model):
    # 模型的字段
  title = models.CharField(max_length = 200)
  description = models.TextField()
  last_modified = models.DateTimeField(auto_now_add = True)
  img = models.ImageField(upload_to = "images/")
    # 用标题名称重命名模型实例
  def __str__(self):
    return self.title

每当我们创建模型,删除模型或更新项目 models.py 的任何内容时。我们需要运行两个命令进行迁移和迁移。makemigrations基本上为预安装的应用程序(可以在 settings.py 的已安装应用程序中查看)和新创建的应用程序模型生成SQL命令,而迁移则在数据库文件中执行这些SQL命令。

所以当我们运行时,

Python manage.py makemigrations

创建上述模型作为表的 SQL 查询,然后创建

 Python manage.py migrate

在数据库中创建表。

现在我们已经创建了一个模型,我们可以执行各种操作,例如为表创建行或Django创建模型实例。  



目录
相关文章
|
4天前
|
机器学习/深度学习 数据安全/隐私保护 计算机视觉
过三色刷脸技术,过三色刷脸技术教程,插件过人脸python分享学习
三色刷脸技术是基于RGB三通道分离的人脸特征提取方法,通过分析人脸在不同颜色通道的特征差异
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
130 11
200行python代码实现从Bigram模型到LLM
|
27天前
|
人工智能 搜索推荐 数据可视化
用 Python 制作简单小游戏教程:手把手教你开发猜数字游戏
本教程详细讲解了用Python实现经典猜数字游戏的完整流程,涵盖从基础规则到高级功能的全方位开发。内容包括游戏逻辑设计、输入验证与错误处理、猜测次数统计、难度选择、彩色输出等核心功能,并提供完整代码示例。同时,介绍了开发环境搭建及调试方法,帮助初学者快速上手。最后还提出了图形界面、网络对战、成就系统等扩展方向,鼓励读者自主创新,打造个性化游戏版本。适合Python入门者实践与进阶学习。
116 1
|
27天前
|
Linux 数据库 数据安全/隐私保护
Python web Django快速入门手册全栈版,共2590字,短小精悍
本教程涵盖Django从安装到数据库模型创建的全流程。第一章介绍Windows、Linux及macOS下虚拟环境搭建与Django安装验证;第二章讲解项目创建、迁移与运行;第三章演示应用APP创建及项目汉化;第四章说明超级用户创建与后台登录;第五章深入数据库模型设计,包括类与表的对应关系及模型创建步骤。内容精炼实用,适合快速入门Django全栈开发。
56 1
|
2月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
212 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
SQL 关系型数据库 MySQL
07 Django模型 - ORM简介及MySQL数据库的使用
07 Django模型 - ORM简介及MySQL数据库的使用
128 0
|
数据库 Python 关系型数据库
Django模型简介
模型是一个定义数据源的数据,它包含要存储数据的一些属性和行为。通常,每一个模型对应数据库中的一个数据表。 每一个模型是django.db.models.Model的子类 每一个模型属性代表数据表的一个字段。
|
8月前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
515 45
|
10月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
343 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面

热门文章

最新文章

推荐镜像

更多