C++二分算法:找到最接近目标值的函数值(二)

简介: C++二分算法:找到最接近目标值的函数值

方法二:超时

分析

从右向左枚举左边缘,setIndexs 记录各位为0的最小索引,vPre记录本位的上一个索引方便删除。

时间复杂度

O(nlogmax(loglogmax)+nlogmax)

核心代码

class Solution {
public:
  int closestToTarget(vector<int>& arr, int target) {
    m_c = arr.size();
    const int iBitNum = 21;
    vector<int> vPre(iBitNum, -1);
    multiset<int> setIndexs;
    int iRet = INT_MAX;
    for (int left = m_c - 1; left >= 0; left--)
    {
      for (int iBit = 0; iBit < iBitNum; iBit++)
      {
        if (arr[left] & (1 << iBit))
        {
          continue;
        }
        if (-1 != vPre[iBit])
        {
          setIndexs.erase(setIndexs.find(vPre[iBit]));
        }
        setIndexs.emplace(left);
        vPre[iBit] = left;
      }
      vector<int> vValue = { arr[left] };
      for (const auto& index : setIndexs)
      {
        vValue.emplace_back(vValue.back() & arr[index]);
      }
      for (const auto& value : vValue)
      {
        iRet = min(iRet, abs(value - target));
      }
    }
    return iRet;
  }
  int m_c;
};

方法三:

分析

func(arr,l,r)等于arr[l]&func(arr,l+1,r)。

令iMax=max(nums[i]) ,func(arr,l,x) x取值范围[l,n) 最多只有log(iMax)种可能。nums[i]最多有log(iMax)个二进制位为1,and只会将1变成0,不会将0变成1。所以1只会不断减少,最坏的情况下,每次减少一个1,共减少log(iMax)次。

时间复杂度

O(nlogmaxloglogmax)。稳定能过。

class Solution {
public:
  int closestToTarget(vector<int>& arr, int target) {
    m_c = arr.size(); 
    set<int> setPre = { arr.back() };
    int iRet = abs(arr.back() - target);
    for (int left = m_c - 1-1; left >= 0; left--)
    {
      set<int> dp = { arr[left] };
      for (const auto& pr : setPre)
      {
        dp.emplace(pr & arr[left]);
      }
      setPre.swap(dp);
      for (const auto& pr : setPre)
      {
        iRet = min(iRet, abs(pr - target));
      }
    }
    return iRet;
  }
  int m_c;
};

方法四

分析

dp本来就是降序,所有用向量也可以判断是否重复,换成向量速度再次提升。理论上速度可以提升几倍,实际提升50%左右。

时间复杂度

O(nlogmax)。

class Solution {
public:
  int closestToTarget(vector<int>& arr, int target) {
    m_c = arr.size(); 
    vector<int> vPre = { arr.back() };
    int iRet = abs(arr.back() - target);
    for (int left = m_c - 1-1; left >= 0; left--)
    {
      vector<int> dp = { arr[left] };
      for (const auto& pr : vPre)
      {
        const int iNew = pr & arr[left];
        if (dp.back() != iNew)
        {
          dp.emplace_back(iNew);
        }
      }
      vPre.swap(dp);
      for (const auto& pr : vPre)
      {
        iRet = min(iRet, abs(pr - target));
      }
    }
    return iRet;
  }
  int m_c;
};

2023年3月第一版

class Solution {
public:
int closestToTarget(vector& arr, int target) {
std::set pre;
std::priority_queue queNear;
for (const auto& a : arr)
{
std::set dp;
for (const auto& pr : pre)
{
dp.insert(pr&a);
queNear.push(abs((pr&a)-target));
if (queNear.size() > 1)
{
queNear.pop();
}
}
dp.insert(a);
queNear.push(abs(a-target));
if (queNear.size() > 1)
{
queNear.pop();
}
pre.swap(dp);
}
return queNear.top();
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨子曰:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
目录
打赏
0
0
0
0
36
分享
相关文章
解读 C++ 助力的局域网监控电脑网络连接算法
本文探讨了使用C++语言实现局域网监控电脑中网络连接监控的算法。通过将局域网的拓扑结构建模为图(Graph)数据结构,每台电脑作为顶点,网络连接作为边,可高效管理与监控动态变化的网络连接。文章展示了基于深度优先搜索(DFS)的连通性检测算法,用于判断两节点间是否存在路径,助力故障排查与流量优化。C++的高效性能结合图算法,为保障网络秩序与信息安全提供了坚实基础,未来可进一步优化以应对无线网络等新挑战。
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
71 15
公司局域网管理中的哈希表查找优化 C++ 算法探究
在数字化办公环境中,公司局域网管理至关重要。哈希表作为一种高效的数据结构,通过哈希函数将关键值(如IP地址、账号)映射到数组索引,实现快速的插入、删除与查找操作。例如,在员工登录验证和设备信息管理中,哈希表能显著提升效率,避免传统线性查找的低效问题。本文以C++为例,展示了哈希表在局域网管理中的具体应用,包括设备MAC地址与IP分配的存储与查询,并探讨了优化哈希函数和扩容策略,确保网络管理高效准确。
|
14天前
|
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
33 4
|
24天前
|
企业员工数据泄露防范策略:基于 C++ 语言的布隆过滤器算法剖析[如何防止员工泄密]
企业运营过程中,防范员工泄密是信息安全领域的核心议题。员工泄密可能致使企业核心数据、商业机密等关键资产的流失,进而给企业造成严重损失。为应对这一挑战,借助恰当的数据结构与算法成为强化信息防护的有效路径。本文专注于 C++ 语言中的布隆过滤器算法,深入探究其在防范员工泄密场景中的应用。
40 8
|
1月前
|
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
113 6
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
基于GWO灰狼优化的多目标优化算法matlab仿真
本程序基于灰狼优化(GWO)算法实现多目标优化,适用于2个目标函数的MATLAB仿真。使用MATLAB2022A版本运行,迭代1000次后无水印输出结果。GWO通过模拟灰狼的社会层级和狩猎行为,有效搜索解空间,找到帕累托最优解集。核心步骤包括初始化狼群、更新领导者位置及适应值计算,确保高效探索多目标优化问题。该方法适用于工程、经济等领域复杂决策问题。
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
39 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等