人工智能实验 python tensorflow keras拟合正弦函数,工资预测,公司收益预测

简介: 人工智能实验 python tensorflow keras拟合正弦函数,工资预测,公司收益预测

本文实现一个利用python 进行拟合的代码

拟合的意义

对已经发生过的事实的影响因素当作输入, 事件结果当作输出

以此来发现事物之间的规律,来预测 短暂未来中是否会发生某件事情的概率,或者商品估值

实际上 任何 的预测回归问题,都可以通过 tensorflow的深度学习来实现

预测分析

多因素对 工资分配的拟合 图像

公司业务成本对收益的影响拟合曲线

import matplotlib.pyplot as plt#约定俗成的写法plt
#首先定义两个函数(正弦&余弦)
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(1,))
#
# model.compile(optimizer=tf.keras.optimizers.Adam(0.5),
#               loss='categorical_crossentropy',
#               metrics=['accuracy'])
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss='mse',
              optimizer=optimizer,
              metrics=['mae', 'mse'])
X=np.linspace(-np.pi,np.pi,256,endpoint=True)#-π to+π的256个值
print("x的值",X.shape)
S=np.sin(X)
x1=[]
s1=[]
for index in range(len(X)):
    x1.append([X[index]])
    s1.append([S[index]])
x1=np.array(x1)
s1=np.array(s1)
model.fit(x1,s1,epochs=0, batch_size=32)
before_t=[]
for tempx in X:
    print(tempx)
    tempx=model.predict([tempx])
    tempx=tempx[0]
    before_t.append(tempx)
model.fit(x1,s1,epochs=100, batch_size=32)
after_t=[]
for tempx in X:
    print(tempx)
    tempx=model.predict([tempx])
    tempx=tempx[0]
    after_t.append(tempx)
    print(tempx)
plt.plot(X,S,label='sin(x)')
plt.plot(X,before_t,label="before_train")
plt.plot(X,after_t,label="after_train",color="yellow")
#在python的交互环境中需要这句话才能显示出来
plt.legend()
plt.show()


相关文章
|
23天前
|
人工智能 PyTorch TensorFlow
人工智能应用工程师技能提升系列1、——TensorFlow2
人工智能应用工程师技能提升系列1、——TensorFlow2
40 0
|
2月前
|
人工智能 自然语言处理 机器人
探索人工智能:使用Python构建一个简单的聊天机器人
探索人工智能:使用Python构建一个简单的聊天机器人
43 0
|
2月前
|
机器学习/深度学习 分布式计算 NoSQL
Python 人工智能:21~23
Python 人工智能:21~23
58 0
|
2月前
|
机器学习/深度学习 人工智能 机器人
Python 人工智能:16~20
Python 人工智能:16~20
16 0
|
2月前
|
机器学习/深度学习 人工智能 算法
Python 人工智能:11~15
Python 人工智能:11~15
29 0
|
2月前
|
机器学习/深度学习 算法 TensorFlow
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
38 0
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
|
4天前
|
机器学习/深度学习 人工智能 算法框架/工具
Python在人工智能领域的应用与发展
【2月更文挑战第6天】随着人工智能技术的快速发展,Python作为一种简洁高效的编程语言,在人工智能领域扮演着举足轻重的角色。本文将探讨Python在人工智能领域的应用现状和未来发展方向,分析其在机器学习、深度学习等方面的优势,并展望Python在人工智能领域的前景。
16 6
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
Python在人工智能领域的应用与发展
【2月更文挑战第4天】 随着人工智能技术的快速发展,Python作为一种高效而强大的编程语言,在人工智能领域发挥着越来越重要的作用。本文将探讨Python在人工智能领域的应用现状及未来发展方向,介绍其在机器学习、深度学习等方面的优势以及相关的技术趋势。
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
Python在人工智能领域的崛起与应用
【2月更文挑战第4天】随着人工智能技术的快速发展,Python编程语言在这一领域中扮演着重要角色。本文将探讨Python在人工智能领域的崛起和广泛应用,并介绍其在机器学习、深度学习和自然语言处理等方面的具体应用案例。
|
6天前
|
机器学习/深度学习 人工智能 PyTorch
Python 与人工智能的完美结合——解析 PyTorch 框架
【2月更文挑战第4天】本文将探讨 Python 在人工智能领域中的应用,以及介绍 PyTorch 框架。PyTorch 是一个基于 Python 的开源机器学习库,其强大的自动微分功能和易于使用的接口使其成为深度学习领域的热门选择。本文将从 PyTorch 的发展历程、工作原理以及示例代码等方面进行详细分析和解释。

相关产品