数据结构-堆和二叉树(1)

简介: 数据结构-堆和二叉树

1.树的概念及结构

1.1 树的相关概念

下图就是一个树型结构,我们先来了解一下它的相关概念:

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林

简单在图中标识一下:

1.2 树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

有一个特殊的结点,称为根结点,根节点没有前驱结点(即没有父节点

除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继

因此,树是递归定义的

可以这样理解:一个树是由父节点和N颗子树构成的

如下图所示,红圈内的就是子树:

而且每棵子树也能分为父节点和许多子树,所以说树可以递归定义。

但是注意,树型结构中,子树不能有交集,有交集就不能被称为树型结构

1.3 树的表示

学了树的概念,我们来看看怎么表示树,一个树有很多子节点,但实际上在定义之前,我们并不知道到底有多少子节点,那树应该怎么定义呢?

实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法

等。我们这里就简单的了解其中最常用的孩子兄弟表示法

struct TreNode
{
  struct TreeNode* fristChild;//第一个孩子节点
  struct TreeNode* pNextBrother;//指向下一个兄弟节点
  int data;//节点中的数据域
};

结构体中有两个指针,分别指向第一个孩子节点和它的下一个兄弟节点,那上文中的树型结构用孩子兄弟表示法表示如下:

图中红线是父子节点之间的连线,蓝线是兄弟节点之间的连线,通过这种方式,只要找到第一个孩子,就能找到他的所有兄弟节点。例如:A中fristChild指针指向它的第一个孩子B,B中的fristChild指向它的第一个孩子C,pNextBrother指向他下一个兄弟节点......

1.4 树在实际中的应用(表示文件系统的目录树结构)

2.二叉树的概念及结构

2.1 概念

一棵二叉树是结点的一个有限集合,该集合:

由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:

   1. 二叉树不存在度大于2的结点。

   2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.2 特殊的二叉树

我们已经知道了二叉树中每个父节点最多只能有2个子节点,下面来看两种特殊的二叉树:

满二叉树:

一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。

完全二叉树:

前h-1层是满的,最后一层可以不满,但是从左到右必须是连续的。

那二叉树在是怎么存储的呢?

2.3 二叉树的存储

我们可以把它的每一层数据按顺序存储到数组中,父节点和子节点之间下标有相应的关系。

由于满二叉树和完全二叉树它的最后一层前的每一层都是满的,所以适合用数组存储,但是如果不是完全二叉树就不适合用数组存储:

3.堆的概念及结构

概念:

堆必须要满足下面两个条件:

1. 完全二叉树。

2. 大堆:树的任何一个父亲都大于等于孩子。

   小堆:树的任何一个父亲都小于等于孩子。

下面看一道题目:

1.下列关键字序列为堆的是:()

A 100,60,70,50,32,65

B 60,70,65,50,32,100

C 65,100,70,32,50,60

D 70,65,100,32,50,60

E 32,50,100,70,65,60

F 50,100,70,65,60,32

答案是A,我们画一下图就能很清楚地看出来了,它既满足完全二叉树,也满足大堆条件。

结构:

注意:有序的数组不代表它就是堆,因为堆只规定父亲和孩子的大小,但是没规定左孩子和右孩子的大小

堆也有它的应用:

1、堆排序  2、topk  3、优先级队列。这些我们在后面的章节讲

目录
相关文章
|
1月前
|
存储 算法 Java
散列表的数据结构以及对象在JVM堆中的存储过程
本文介绍了散列表的基本概念及其在JVM中的应用,详细讲解了散列表的结构、对象存储过程、Hashtable的扩容机制及与HashMap的区别。通过实例和图解,帮助读者理解散列表的工作原理和优化策略。
40 1
散列表的数据结构以及对象在JVM堆中的存储过程
|
1月前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
82 4
|
1月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
86 16
|
1月前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
132 8
|
2月前
|
存储 JavaScript 前端开发
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
100 1
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
32 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
37 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
2月前
|
Java
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
31 1
|
2月前
|
算法 Java C语言
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
29 1
|
2月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆